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Abstract

In this thesis, a setup for realization of Rydberg superatoms was implemented in an existing
experiment. With this new setup, the modulation of a few photon light pulse mediated by a
single Rydberg superatom was investigated.

The setup for realizing such a superatom consist of an additional optical trap, a dimple trap,
overlapped with the existing dipole trap. The main component in this additional trap is an
acousto optic deflector, which can deflect a laser beam into multiple beams of variable position,
and therefore gives the new setup a high degree of versatility, allowing us to realize multiple
dimple traps.

With a single dimple trap, a Rydberg superatom was realized. A superatom is an atomic
ensemble which behaves collectively as a single atom. The Rydberg superatom consisting of N
atoms interacts collectively with a driving field, experiencing a coupling strength enhancement of√
N compared to the single atom coupling. Because of this coupling enhancement, our Rydberg

superatom will interact with a field of even very few photons.
With the Rydberg superatom the interactions of quantized light with a two level system can

be investigated. The system modulates the light pulse on single photon level, causing a signal
in the two photon correlation function.

In this thesis, the photon correlating dynamics of the superatom is investigated, showing
the signal of up to three photon correlations in the photon third order correlation function and
showing the signal of pure three photon correlations in the connected third order correlation
function. These measurements are the first of their kind, and they clearly show how a two-level
system interacting with a light field introduces correlations of three photons.

As the superatom is highly unidirectional, it also poses as an interesting candidate for a
cascaded quantum system. In this thesis we discuss initial measurements on two atomic en-
sembles in series. With the alignment achieved so far, compared with the single realization the
two superatoms do not behave as well as single two-level systems, and this must be further
optimized.
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Resumé

I dette specialeforløb har vi bygget en eksperimentel opstilling til at realisere Rydberg super-
atomer. Opstillingen er blevet implementeret i et eksisterende eksperimentalt setup. Med den
nye opstilling har vi undersøgt, hvordan et elektromagnetisk felt med f̊a fotoner interagerer med
et enkelt Rydberg superatom.

Opstillingen til at producede et superatom best̊ar af en ekstra optisk fælde, der bliver overlap-
pet med en eksisterende optisk fælde. Den vigtigste komponent i opstillingen er en akusto-optisk
deflektor, som kan afbøje en laserstr̊ale i adskillige str̊aler. Dette gør opstillingen meget fleksibel,
fordi det er muligt at lave flere optiske fælder samtidig.

Med en enkelt optisk fælde realiserede vi et enkelt Rydberg superatom. Et superatom er et
atomensemble, der kollektivt opfører sig som et enkelt atom. Rydberg-superatomer realiseres
ved hjælp af Rydberg blokademekanismen. Ved at afgrænse atomensemblet s̊a det er vel indenfor
det volumen, der er defineret af en enkelt Rydberg blokaderadius, f̊ar man et medium, der kun
tillader en enkelt excitation, og som effektivt er et to-levelsystem.

Et Rydberg superatom best̊aende af N atomer interagerer kollektivt med et drivende elek-
tromagnetisk felt med en interaktionsstyrke, der er forstærket med en faktor

√
N sammenlignet

med interaktionsstyrken for et enkelt atom. P̊a grund af denne forstærkning af interaktionen
mellem lys og to-levelsystem interagerer vores Rydberg superatom interagerer med selv felter
med meget f̊a fotoner.

Med et Rydberg superatom kan man derfor undersøge interaktionen mellem et to-levelsystem
og et kvantiseret lysfelt. Man finder, at systemet ændrer lysfeltet p̊a enkelt-foton niveau, og at
dette resulterer i et signal i to-foton-korrelationsfunktionen.

I dette speciale har vi undersøgt hvordan et superatom skaber foton-korrelationer. Her viser
vi et signal af korrelation af op til tre fotoner i tredjeordens korrelationsfunktionen, og vi viser
et signal af rene trefoton korrelationer i den connectede tredjeordens korrelationsfunktion. Disse
m̊alinger er de første af deres slags, og de viser klart hvordan et to-levelsystem, som interagerer
med et lysfelt, introducerer korrelationer mellem tre fotoner i feltet.

Fordi Rydberg superatomer ogs̊a er meget ensrettede i deres emission af lys, er de interessante
kandidater for et kvante-kaskadesystem. I dette speciale diskuterer vi de første m̊alinger p̊a to
atomensembler i serie. Indtil nu har vi ikke kunne f̊a to superatomer til at opføre sig lige s̊a
godt som et to-level system, som et enkelt superatom gør. Fremtidige finjusteringer er derfor
nødvendige.
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Chapter 1

Introduction

Harnessing quantum effects has been proposed as key concept for future technology. This wide-
ranging research and development effort has been designated the second quantum revolution
[1].

Among the large variety of system under investigation, optical photons play a key role. They
have been identified as the ideal carrier of long-distance quantum information, as they do not
interact and move with speed of light. Besides information transfer, optical photons can also be
used directly for information processing. Here the above points are rather a problem, and one
possible solution are engineered interaction between photons, because this enables deterministic
on-the-fly processing of photonic qubits[2, 3].

Such nonlinear processes are well known from e.g. frequency doubling or sum-frequency
generation and from the nonlinear Kerr-effect. refs The field of quantum nonlinear optics focuses
on the regime where interactions between single photons are so strong that the nonlinearity
depends on the exact number of photons present [3]. The realization of strongly nonlinear media
is an expanding field of research with many different media, but so far only two systems have
reached the quantum nonlinear regime. Those are high finess cavities and Rydberg nonlinear
medium [4].

The key consept is Rydberg nonlinear optics is the mapping of photons onto atomic states
with strong interactions, as the strong dipole-dipole interactions between Rydberg atoms enable
the realizationo of highly nonlinear media [5, 4].

Rydberg nonlinear media in free space have many useful applications, and have been used
to realized a number of quantum tools such as, single photon sources [6, 7, 8], phase gates
and switches [9], transistors [10], CNOT gates [11], single photon absorbers [12], entanglement
between photons and entanglement between photons and atoms [13, 14].

Antibunched and bunched photons have been observed in free space Rydberg nonlinear media
[8]. The bunching and antibunching are measured with the two photon correlation function,
which is a standard measure of how photons interact [15, 16].

The concept of Rydberg superatoms can me used for creating photon-photon interactionn.
By employing the Rydberg blockade mechanism, we make an atomic ensemble ofN atoms behave
collectively as a single two plus one level system [17]. This ensemble, which we call a Rydberg
superatom, has a strongly enhanced coupling to the driving field and enhanced emission into the
forward mode of our system due to the collective behavior [18]. Therefore, a Rydberg superatom
allows investigation of the most fundamental interactions between light and a two level system.
In our setup we have previously showed that the collective coupling can become so strong that
a Rydberg superatom can modulates the light field on single photon level, and show a strong
correlation effects on two photons [12, 19].



2 INTRODUCTION

In this thesis, the measurements of photon correlations are taken further by analyzing the
three-photon correlations mediated by a superatom. Three-photon correlations have recently
been observed with propagating Rydberg polaritons [20]. In the scope of this thesis we have
shown the first signature of three-photon correlations observed in the connected correlation
function. The analysis has lead to a joint publication with theory partners from Universitẗ
Stuttgart.

Three-photon correlation measurements are an experimental achievement, in the sense that
very high experimental stability is required to keep a high signal to noise ratio on the connected
third order correlation function signal which is two orders of magnitude than the two photon
correlation signal.

The Rydberg superatom is not only a promising system for high order photon-photon in-
teractions. Due to the unidirectional character of the superatom, which has enhanced emission
into the forward mode, and the strong coupling to light the Rydberg superatom can also be
a candidate for future cascaded quantum systems [21]. This would be realized with multiple
superatoms in series. The initial experimental steps for such a system have been taken within
this thesis by realizing two superatoms.



Chapter 2

The Rydberg superatom

In this chapter, the concept of the Rydberg superatom is introduced. The key aspect is to use
the Rydberg blockade mechanism to turn an ensemble of identical atoms into a single, effective 2-
level quantum emitter. Because of the large number of real atoms involved, the coupling between
this superatom and a single photonic mode is strongly enhanced. The chapter in section 2.1
begins with a short introduction to the two-level system coupled to a light field.

In section 2.2 the interaction between Rydberg atoms is introduced, and we discuss the
Rydberg blockade mechanism. In section 2.3 we see how the Rydberg blockade can be used to
realize a Rydberg superatom. The Rydberg superatom is an ensemble of atoms that experiences
a collective enhancement of atom light coupling. Finally, in section 2.4 we introduce a model
describing the coupling between a single superatom and a quantized photonic field.

2.1 The open two-level system

Spontaneous emissionStimulated emissionAbsorption

(a) (b) (c)

1
Figure 2.1: Three fundamental processes of a two-level system. a) is the absorption of a photon
leading to an excitation, b) is the decay of the excitation due to stimulated emission of a photon.
c) is spontaneous emission of a photon.

In this section, the theoretical principles of a two-level system interacting with a photonic
field are discussed. As already mentioned, a two-level system coupled to a photonic field is the
simplest system which can modulate light. As discussed in most quantum optics textbooks when
the interaction between light and a two-level systems is treated, three fundamental processes
are typically considered. These processes are illustrated in figure 2.1, and they a) absorption
of a photon, raising the two-level system from ground to excited state. b) stimulated emission,
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h̄∆

h̄ω h̄ω0

|g〉

|e〉

ω

1
Figure 2.2: Two-level system with ground state |g〉 and excited state |e〉. The energy-gap between
the two levels is h̄ω0. An incoming light field with frequency ω is detuned with ∆ = ω0−ω with
respect to the system resonance frequency.

where an absorbed photon is emitted into the same mode as an incoming, triggering photon,
while the two-level system decays is brought from the excited state to the ground state, and c)
spontaneous emission, where a photon is spontaneously emitted while the system decays from
the excited state to the ground state. The last process is in the simple picture a random process.
To describe spontaneous emission, it is necessary to take vacuum fluctuations into account [22].

Because of the spontaneous emission, it is often too complicated to describe the full system,
as this will include all possible photon modes [15]. To include the vacuum fluctuations, it is
therefore instructive to consider an open quantum system, where the full system is broken into
the part of interest and a surrounding environment. The interaction of the system and the
environment is treated as a decay term, describing the loss of coherence into the quantum states
involving the not described photonic modes.

In the following the time evolution of a two-level system coupled to a photonic field is
described by solving a fully coherent master equation. The dissipative dynamics are added in
an additional Lindblad term.

First, the situation of an atom in free space interacting with electromagnetic fields in general
is considered. The system is illustrated in figure 2.2. The atom is considered to have a ground
state |g〉 and an excited state |e〉. The levels have an energy difference h̄ω0, where h̄ is the
reduced Planck constant and ω0 is the resonance frequency of the system.

The full Hamiltonian for a coupled system is the sum of the Hamiltonians for the atom, the
field, and the interactions between atom and field, so that

H = Hatom +Hfield +Hint. (2.1.1)

The atomic Hamiltonian is given by the energy of each of the two states. Setting the ground
state energy to zero yields

Hatom = h̄ω0|e〉〈e|. (2.1.2)

As a general field is considered, the field Hamiltonian is an integral over all modes k, where k
contains both the wave vector and one of two orthogonal polarizations,

Hfield =

∫
dk h̄ωka

†
kak, (2.1.3)

where ωk is the frequency of the k’th mode, and ak is the annihilation operator for the k’th
mode. When applying to a photon state, ak removes one photon of the k’th mode. The product
a†kak is the number operator, giving the number of photons in the k’th mode.
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To describe the interaction between the uncharged atom and the field, the dipole moment
induced in the atom by the field is considered. The dipole operator d is

d = −er, (2.1.4)

where e is the elementary charge and r is the relative position of the electron to the center of
mass coordinate of the atom in the case of a single electron. If the atom contains more than one
electron, the dipole operator will be the sum over all electrons. For alkali atoms with a single
valence electron in an outer orbital, it is a good approximation to assume that only the valence
electron is relevant, as the electrons in inner orbitals can be assumed to provide spherically
symmetric screening around the nucleus [23, 24]. The dipole term is only the first term in the
multipole expansion, but for most cases the higher order terms are negligible.

The Hamiltonian describing the interaction between the two levels and the electric field is

Hint = −d · Ê, (2.1.5)

where Ê is the electric field operator. The description of the electric field operator depends
on whether a stationary or a traveling field is considered. If the electric field is described as
quantized, the field operator will contain creation and annihilation operators of the photonic
modes. A quantized field considered in section 2.4.

With these three terms of the Hamiltonian, the behavior of a two-level atom interacting with
light can be described. The three fundamental processes in figure 2.1 are all captured by this
model.

In principle by combining all three terms of the Hamiltonian, the full time evolution is given
by the Liouville-von Neumann equation,

∂tρ(t) = − i
h̄

[H, ρ], (2.1.6)

where ρ is the density matrix of the system given by ρ =
∑

α Pα|ψα〉〈ψα|, where |ψ〉 is the state
vector of the system [25].

It is however usually not of interest or not possible to solve the full time evolution for all
fields. Therefore, it is instructive to go to the master equation formalism for an open quantum
system. In this formalism, the spontaneous decay of the system is taken into account with a
single decay term. To see this, the terms in equation 2.1.1 can be renamed to consider the
system, that is the atom, the environment, that is the field, and the interaction, so that

H = Hs +Henv +Hint. (2.1.7)

Here the three separated Hamiltonians govern the system, the environment and the system-
environment interaction respectively. In most situations, the full environment is not of interest
or cannot be solved or known.

Therefore, the terms considering the environment is transformed out of equation 2.1.7 by
taking the partial trace of the density matrix. Thereby information about the degrees of freedom
of the environment are lost. Since the Hamiltonian describing the system-environment interac-
tion will thus lose information of how the system affects the environment, and it can be reduced
to containing the term describing spontaneous decay, σge = |g〉〈e|, from the excited state to the
ground state.

Here the time evolution of the system is treated on its own, while the interaction with the
environment is handled by a second term. Thus the master equation of the system is

∂tρs = − i
h̄

[Hs, ρs] + ΓL(σge)ρs, (2.1.8)
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where Γ is a decay term which handles decay of the system due to the environment, and L is
the Lindblad superoperator. The Lindblad superoperator working on an operator A is defined
as

L(A)ρs = AρsA
† − 1

2

{
A†A, ρs

}
. (2.1.9)

The first term of equation 2.1.8 accounts for the coherent behavior of the system, while the
second term of the master equation containing the Lindblad operator is dissipative.

The master equation is only valid on timescales much longer than the timescale of the
system-environment interaction, as this formalism assumes a stationary environment, and that
the coupling between the system and environment is a fluctuation around a zero mean. This
holds for interactions between a two-level atom and the general electromagnetic fields [26].

Now the situation where the system is driven by a classical field is considered. The driving
field is assumed to be a traveling wave with frequency ω, as drawn in figure 2.2. It can be
described with

E(r, t) = E0ep · cos(ωt− k · r), (2.1.10)

where E0 is the field amplitude and ep is the field polarization.
For a two-level system, where the wavefunction is

|ψs〉 = cg(t)|g〉+ ce(t)|e〉, (2.1.11)

the density matrix becomes

ρs =

(
ρgg ρge
ρeg ρee

)
=

(
|cg(t)|2 cg(t)c

∗
e(t)

cec
∗
g(t) |ce(t)|2

)
. (2.1.12)

The diagonal elements describe the populations of the states, while the off-diagonal elements
describe the coherences of the system.

The interaction between the driving field and the atom is given by the same expression as
in equation 2.1.5, but in the semiclassical treatment the atom is treated quantum mechanically
while the driving field is considered a classical vector field,

HsemiClas
int = −d̂ ·E. (2.1.13)

The dipole operator can also be written on matrix form, considering the elements of the
atomic matrix of equation 2.1.11. There are no entries for the diagonal part of the dipole
operator matrix, as the dipole operator depends on r, which is odd. Evaluating the probability
of a dipole transition from a state to itself will give zero. Thus, the dipole operator is

d̂ = d̄(|e〉〈g|+|g〉〈e|), (2.1.14)

where d̄ is the expectation value of d, and |e〉〈g|, |g〉〈e| are the off-diagonal elements of the system
density matrix. With the classical field description, the total Hamiltonian of the system is

H = Hatom +HsemiClas
int . (2.1.15)

Transforming to the rotating frame, where the reference frame of the system is rotating with
the phase of the light, and using the rotating wave approximation to omit fast rotating terms,
the Hamiltonian can be written in the form

H =
h̄

2

(
0 Ω
Ω 2∆

)
, (2.1.16)
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where ∆ is the detuning between the light field frequency ω and the two-level system resonance
frequency ω0, ∆ = ω − ω0. Ω is the Rabi frequency of the system, which is an expression for
the interaction between the field and the two-level system and describes the coupling strength
between the levels. The Rabi frequency is given by

Ω = −E0d̂ ·E
h̄

. (2.1.17)

The Lindblad superoperator term is

ΓL(σge)ρs =
h̄

2

(
2Γρee Γρge
−Γρeg −Γ2ρgg

)
. (2.1.18)

The diagonal entries correspond to the decay of population from the excited state to the ground
state. The signs reveal that the population in the excited state decreases, while the population
in the ground state increases. The off-diagonal element describes the decay of the coherences in
the system.

Substituting equation 2.1.16 and equation 2.1.18 into equation 2.1.8 leads to four coupled
differential equations for the components of the system density matrix. This set of differential
equations are known as optical Bloch equations,

∂tρee = i
Ω

2
(ρeg − ρge)− Γρee, (2.1.19)

∂tρgg = −iΩ
2

(ρeg − ρge)− Γρee, (2.1.20)

∂tρge = −iΩ
2

(ρee − ρgg)− (Γ− i∆) ρeg, (2.1.21)

∂tρeg = i
Ω

2
(ρee − ρgg)− (Γ + i∆) ρge. (2.1.22)

These equations describe the populations in the two states respectively, which follows from the
diagonal elements of the density matrix.

What is observed is oscillations in the populations which dampen out over time. When
∆ = 0 the oscillation frequency is given by the Rabi frequency, Ω and the damping is given
by Γ. Both the Rabi frequency and the damping contains the coupling between the atom and
the light [26, 27]. Figure 2.3 shows solutions to the two-level system. Figure 2.3 a) shows
the oscillations of the undamped system, whereas figure 2.3 b) shows oscillations for a damped
system with ∆ = 0. In the damped system the oscillations damp to a steady state value.

2.2 Rydberg Physics

Rydberg atoms are atoms with a single electron excited to a state with large principle quantum
number n. Compared to ground state atoms, the key properties of Rydberg atoms, such as
lifetime and size, are extremely large [23]. One important aspect for our experiments is the
resulting long-range interaction between Rydberg atoms.

Due to the spatially large distribution of the wave function of the highly excited electron,
which scales as n2 [23], the atoms are very prone to get induced dipole moments, and as a
consequence they are very sensitive to electric and magnetic fields. The interaction between
Rydberg atoms can be calculated with a multipole expansion for distances larger than the Le
Roy radius RLR [28]. For distances smaller than RLR, it becomes necessary to take into account
that the wave functions of the Rydberg atoms start to overlap. For S-states, at large distances,
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Figure 2.3: Rabi oscillations illustrated. a Rabi oscillations in driven two level system with
Γ = 0. The oscillations continue forever when spontaneous decay is not taken into account. The
lines show different values of Ω. Blue is Ω = 2, orange is Ω = 1, and yellow is Ω = 0.5. b) Rabi
oscillations with decay. All lines are for Ω = 0.5,∆ = 0. Blue line is for Γ = 0.1, orange for
Γ = 0.5, and yellow for Γ = 1.
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Figure 2.4: Interaction between Rydberg atoms. Potential curve for Rydberg states with
the interaction between Rydberg states around |111S1/2,mj = 1/2〉. It is seen that the
|111S1/2,mj = 1/2〉-|111S1/2,mj = 1/2〉 interaction goes as 1/r6, whereas other states have dif-
ferent behaviours at small distances. The colorcoding shows the overlap of the state of interest
with nearby states. Thus the colors show the admixture of the |111S1/2,mj = 1/2〉 pair state in
other states.
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|g, g〉
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Figure 2.5: Rydberg level schemes. a) Excitation of two Rydberg atoms is allowed if the distance
between them is sufficiently large. b) Within the blockade radius, the energy of a second Rydberg
excitation is shifted out of resonance.

the interaction can be assumed to be well described by Van der Waals interactions, such that
that U ∝ C6/r6.

Figure 2.6 c) shows the potential curve for different Rydberg states interacting with the
|111S1/2,mj = 1/2〉 state as calculated with the Pair Interaction software [28]. The |111S1/2,mj =
1/2〉 Rydberg state is chosen as this is the state used for the data presented in this thesis.

A key consequence of the strong interaction is the so-called Rydberg blockade. A Rydberg
excitation will cause a modulation of the energy levels of the atoms in the immediate vicinity
[11, 29]. This shift of energy levels effectively blocks further excitation of close by atoms to the
same level as this transition is no longer resonant with the driving field. The energy potential
for different Rydberg state interactions is shown in figure 2.4.

The blockade caused by the Van der Waals interaction is described with a blockade radius,

rb = 6

√
c6

h̄Ω
. (2.2.1)

Within the blockade sphere with this radius, only one atom can be excited by a monochromatic
field driving the transition with Rabi frequency Ω, to a state with Van der Waals coefficient c6.
This is what is illustrated in figure 2.6 a) and b). In figure 2.6 a), the two atoms are spaced
with a distance greater than the blockade radius, while in figure 2.6 b), the interatomic spacing
is smaller than the blockade radius, and the second atom therefore experiences a level shift
as shown with the curved line. The blockade effect allows ensembles much larger than optical
wavelengths to behave in a collective fashion, and this is the key to the strong nonlinear behavior
of Rydberg atomic media [7, 30] and to enhancing the coupling between atoms and driving field,
allowing a meaningful Ω for a driving field with few photons [31].

2.3 Superatom

The Rydberg superatom is one of many applications of the Rydberg blockade mechanism. A
superatom is an ensemble of multiple atoms, which behaves as a single atom. A Rydberg
superatom can be realized by confining an atomic ensemble entirely within a volume limited to
one blockade radius [32]. Single Rydberg superatoms have been realized, and the superatom
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|W 〉

|G〉

{|Di〉}N−1
i=1

gcol
√Rin

ΓΓ γD

(a) (b)

Blockade sphere

Excited

Fully blockaded

atom

atomic ensemble

1
Figure 2.6: Rydberg superatom. a) An atomic ensemble is fully within the volume defined by
one blockade radius, and thus they all experience the Rydberg blockade when one atom is excited
to a Rydberg state. b) Level diagram showing the collective states; the collective ground state
|G〉, the bright state, |W 〉, which is a symmetric superposition of the states where one atom is
excited to a Rydberg level, and the manifold of dark states, {|Di〉}N−1

i=1 . The dark states are
only accessed through dephasing. For a sufficiently large number of atoms in the ensemble, the
dephasing from the excited state into the dark states can be treated with a decay rate, γD.

interaction with weak photonic fields has been investigated [33, 7, 12, 19]. In the scope of this
thesis, the framework of the previous investigations has been extended to study correlations
between three photons Something on arxiv?.

A Rydberg superatom is effectively a zero-dimensional system, as all the atoms are blockaded
by any possible Rydberg excitation. Thus, the position of the Rydberg excitation does not have
an influence on the collective behavior of the system.

An ensemble of N � 1 atoms can exhibit a complex dynamic behavior leading to super-
radiance [31]. To see the dynamics of such an ensemble of atoms within the blockade sphere,
we consider N two-level atoms each with a ground state, |g〉, and an excited Rydberg state |r〉.
Using this description as basis, the first state is |g〉, |r1〉, where |ri〉 corresponds to the i’th atom
being excited to the Rydberg state.

Instead of this basis describing the state of the individual atoms, a collective basis can be
defined. The ground state of the collective basis for N atoms is trivially the state where all
atoms are in the ground state, |G〉 = |g1, g2, · · · , gi, · · · , gN 〉 [18]). To find the collective excited
state, it is instructive to consider the time evolution of the ground state.

The Hamiltonian handling interactions between a plane wave electromagnetic field and an
atomic ensemble is the sum of the operators for a single atom [18]. For a system with N atoms
with two levels, the interaction is given by

Hint = h̄g0

N∑
j=1

(
σ†jak0eik0·rje−i(ω−ω0)t + σja

†
k0

e−ik0·rjei(ω−ω0)t
)
. (2.3.1)

where σj , σ
†
j are operators for the j’th atom, bringing this specific atom from the excited state

to the ground state or from the ground state to the excited state respectively. The photons are
handled by the annihilation and creation operators, ak0 , a

†
k0

, which acts on photons in the k0

mode with frequency ω = c|k0|. In this interaction Hamiltonian, the driving field is already
considered to be quantized, as it will further be discussed in section 2.4.

Comparing the interaction Hamiltonian of equation 2.3.1 to the interaction Hamiltonian of
section 2.1, equation 2.1.13, it is clear that the dipole operator from equation 2.1.13, given by
equation 2.1.14, will be a sum over all atoms where all terms includes a phase factor handling



2.3. SUPERATOM 11

the position of the specific atom.

d̂N = d̄
N∑
j=1

(σ†je
ik0·rj + σje

−ik0·rj ) =
N∑
j=1

d̂j . (2.3.2)

Here d̂N is the full dipole operator working on the full system, and dj is the dipole matrix
element of the j’th atom. Again, d̄ is the expectation value of the dipole operator.

In the case of the excited state being a Rydberg state, the interactions between Rydberg
atoms must also be included, yielding the interaction term

Hint = h̄g0

N∑
j=1

(
σ†jak0eik0·re−i(ω−ω0)t + σja

†
k0

e−ik0·rei(ω−ω0)t
)

+
1

2

N∑
j 6=i

Vi,jσ
†
jσjσ

†
iσi. (2.3.3)

Here Vi,j is the potential that governs Rydberg-Rydberg interactions [34? ]. This potential is
given by the multipole expansion of the interatomic interactions. Thus, when only the dipole
term is relevant, Vi,j will be the Van der Waals term discussed above. This potential is only
relevant when two Rydberg excitations are present. When the potential is much greater than
the atom-light coupling, it corresponds to the blockade situation, as the first term of equation
2.3.3 can create a single operator. The second term however will cause an energy shift of states
containing two excitation, shifting these states out of resonance.

The unitary time evolution of the system is described by [18]

U(τ) = T e−(i/h̄)
∫ τ
0 dt′ V (t′) (2.3.4)

' 1− ig0

∫ τ

t0

dt′
N∑
j=1

(
σ†jak0eik0·re−i(ω−ω0)t + σja

†
k0

e−ik0·rei(ω−ω0)t
)

(2.3.5)

where T is time ordering operator. The approximation to first order is made under the assump-
tion that the interaction strength of a single atom with the field, g0 is small.

Applying this unitary operator to the initial state with one photon in the system in mode
k0 yields

U(τ)|G〉|1k0〉 ' |G〉|1k0〉 − ig0τ

N∑
j=1

eik0·r|g1, g2, · · · , rj , · · · , gN 〉|0〉 (2.3.6)

The subtracted state is then an expression for the excited state. This state is normalized by a
factor of

√
1/N to give the excited state

|W 〉 =
1√
N

N∑
j=1

eik0·xj |j〉, (2.3.7)

where |j〉 is the symmetric linear combination of states where the j’th atom is excited to |r〉 and
all other atoms are in the ground state |g〉. |W 〉 is called the bright state, as it interacts with
the light.

What is important to note in equations 2.3.6 and 2.3.7 is how the photon causing the exci-
tation to the bright state remains in the bright state vector as a phase factor.

The excitation from the ground to the excited state by absorption of one photon is calculated
by

〈0|〈W |V (t)|G〉|1k0〉 =
N√
N
〈0|〈r|V (t)|g〉|1k0〉 =

√
N〈0|〈r|V (t)|g〉|1k0〉. (2.3.8)
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The transition of the collective system between ground and excited state is enhanced by
√
N

compared to the single atom transition.
This is a general observation. For a system with a single allowed excitation collective Rabi

oscillations arises. The collective Rabi frequency of the oscillations will be enhanced from the
one atom effective Rabi frequency Ωeff to

√
NΩeff [5, 33, 31]. For the situation of just two

atoms an increase of the Rabi frequency of
√

2 has been observed [29].
The decay from the collective excited state given by equation 2.3.7 can also be considered.

Assuming no photons in the field, the time evolution can be described in the same way as in
equation 2.3.6. The time evolution operator is given by [18, 15]

UW (t) =
∑
j

U
(j)
W =

∑
j

γ†jσj , (2.3.9)

γ†j =
∑
k

gke−ik·rj

ωk − ω0 + i
2γ
, (2.3.10)

where ωk is the frequency of photons in the k’th mode, γ†j is the radiation operator, creating a
photon in the k’th mode from the j’th atom. γ and in the radiation operator is the spontaneous
emission rate from the Weisskopf-Wigner approximation [15]. σ is the annihilation operator of
the j’th atom, bringing this specific atom from |r〉 to |e〉.

In equation 2.3.11 the spontaneous decay is treated in the Wigner Weisskopf formalism, and
not as in the master equation formalism, as in equation 2.1.8.

With this time evolution operator of equation 2.3.9, the evolution of the state |W 〉|0〉 is

〈G|UW (t)|W 〉|0〉 =
1√
N

∑
j

e−ik0·rjγ†j |0〉 =
1√
N

∑
k

gk

ωk − ω0 + i
2γ
|1k〉

∑
j

ei(k0−k)·rj . (2.3.11)

The final sum in equation 2.3.6 can, under the assumption that the density of atoms is high
enough to be assumed continuous, be approximated by an integral over the volume of the medium
[18], ∑

j

ei(k0−k)·rj ≈ N

V

∫
v

d3r ei(k0−k)·rj =
N

V
(2π)3 deg(3)(k0 − k). (2.3.12)

With this approximation, equation 2.3.6 becomes

〈G|UW (t)|W 〉|0〉 =

√
N

V

∑
k

gk

ωk − ω0 + i
2γ
δ(3)(k0 − k)|1k〉. (2.3.13)

From equation 2.3.13, it is clear that the spontaneously emitted photon is emitted into the
same direction as the photon which was initially absorbed to excite the system [18]. This is a
key element which underlines the relevance of the superatom. Not only is the collective system
coupling to the driving field by a factor of

√
N , the system also preferentially emits back into

the k0-mode, which is the mode of the driving field. It should also be noted, that just as the
coherent coupling to the field is enhanced by a factor of

√
N , so is the collective decay rate.

Apart from the ground state and the excited state, the system also features a collection of
N − 1 collective dark states, given by the remaining asymmetric linear combinations of |j〉Nj=1,

|D〉 =

N∑
j=1

αj |j〉, (2.3.14)
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where α contains the normalization and the phase factor. The collection of dark states are
denoted {D}Ni=1.

Since the dark states are the remaining linear combinations, they must all be orthonormal
to the bright state, so that

0 = 〈W |D〉 =
1√
N

N∑
j=1

N∑
l=1

〈j|l〉αle−ik0·rj =
1√
N

N∑
j=1

αje
−ik0·rj . (2.3.15)

The interaction between a dark state and the ground state is given by

〈G|d̂N |D〉 =
N∑
j=1

〈G|d̂N |j〉αj (2.3.16)

=
N∑
j=1

〈g|d̂j |j〉αj = 0. (2.3.17)

The last equality in equation 2.3.17 follows from 〈g|d̂|j〉 being independent of j [35]. Here the
dipole operator could have been substituted with the full interaction operator from equation
2.3.3, but the final result would not have been different.

With the ground state orthogonal to all dark states, it is clear why they are called dark:
There is no allowed transition from the ground state to the dark states involving the light field.
Without the interaction with the light, it is on one hand not possible to excite an atom to a
dark state by the light field, but on the other hand it is not possible to have stimulated decay
from the dark states, this decay can only be spontaneous, i.e. dissipative. An important point
is that the decay of the dark states is neither directional nor enhanced by collective effects. The
dark states decay as single atoms decay rather than as an ensemble.

The collection of dark states can be treated as a single third level, yielding a system of three
states, but where one state can only be accessed by dephasing. Therefore, this system will be
called a two plus one system.

The transition from the bright state into a dark state can be described for each dark state,
but in the case of 1 � N , the collection of dark states can also be treated as a single level to
which the bright state can decay with rate γ [17].

Also, though the dark states are orthogonal to the bright state, they still contain one Rydberg
excitation and thereby block the medium. Thus dephasing from the bright state into the manifold
of dark states accounts for a main damping mechanism in the system. The dephasing into the
dark states is caused by for finite laser linewidth, thermal motion and collisions between atoms
and describes the loss of coherence in the system.

This extra degree of freedom in the system in the form of a third level allows a range of effects
that cannot take place in a true two-level system. Among these effects is the realization of a
single photon absorber, where the dephasing to dark states are exploited to make an absorbed
photon inaccessible for stimulated emission while keeping the medium transparent to subsequent
photons [12, 17].

2.3.1 Adiabatic elimination

In order to achieve a Rydberg state of long lifetime, it is common to have a transition from the
ground state to the Rydberg state via an intermediate state in a scheme involving at least two
different driving fields. Such a setup is shown in figure 2.7 a). Here the two fields drive the



14 THE RYDBERG SUPERATOM
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1
Figure 2.7: Adiabatic elimination. a) Level scheme for one atom. The red probe light drives
the transition from ground state |g〉 to the intermediate state |e〉 with Rabi frequency Ωp. It
is detuned from resonance of the intermediate state with ∆. The blue control light drives the
transition from the intermediate state to the excited state |r〉 with Rabi frequency Ωc. The probe
light is detuned with δ−∆. The intermediate state decays with Γe. b) Collective level schemes.
By detuning the two driving fields far off intermediate state resonance, ∆/llΓe, the intermediate
state can be adiabatically eliminated. The system can then be treated as a two-level system
driven by an effective Rabi frequency Ωeff .

transition with Rabi frequencies Ωp and Ωc. The detuning from intermediate state resonance
is ∆, and the detuning from two photon reonance is δ. Depending on how these detunings are
chosen, a number of different regimes with different characteristics can be reached.

For the range of detunings where both fields are relatively close to their respective transition
resonances and where the medium can be considered a three-level system the medium can
accommodate the mapping of incoming photons to polaritons, which are quasi particles of dipolar
excitations propagating through the medium. The interactions between the polaritons as they
propagate through the medium is imprinted on the photons which leaves the medium. Thus,
the medium facilitates photon-photon interactions [30].

With both fields on resonance, electromagnetically induced transparency (EIT) is reached,
causing a medium which is otherwise opaque to be transparent. At this resonance, two polaritons
cannot be closer than the blockade radius. This can results in antibunched photons [8].

Keeping the sum of the field frequencies close to two photon resonance, δ ≈ 0 but detuning
both of them from the intermediate state resonance, |∆|> ΓR,Γe, the behavior of the system
will change, leading to a variety of different interactions between the polaritons.

Going further off resonance leads to a regime where the intermediate state can be neglected,
as it can be assumed to be in equilibrium at any given time, permitting it to be treated as
constant.

In the setup described here, Rydberg levels are accessed from the ground state through an
intermediate state. This is seen in figure 2.7 a) where a weak (red) probe field and a strong
(blue) control field excite an atom from the ground state, |g〉, to an intermediate state, |e〉, and
from the excited state to the Rydberg state, |r〉, respectively.

The ground state and the Rydberg state are here both S-states, while the intermediate
state is a P -state, meaning that the direct transition |g〉 ↔ |r〉 is dipole forbidden, while the
transitions through the intermediate state |g〉 ↔ |e〉 and |e〉 ↔ |r〉 are dipole allowed.

These transitions have Rabi frequencies Ωp for the probe transition |g〉 ↔ |e〉 and Ω for the
control transition |e〉 ↔ |r〉 respectively. Ωp is given by g0

√Rin, where Rin is the incoming
photon rate and g0 is the coupling between the light field and a single atom. Ω is given by
a similar expression, but is not of same interest as Ωp, as Rin for the probe is on the order of
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tenths of photons per micro second, while the strong control light can be treated as a completely
classical light field.

Writing the Hamiltonian which describes the interactions between light and atoms in the
rotating frame allows all energies to be expressed as detuning from the relevant transitions. For
detunings ∆ off δ for the control respectively, the Hamiltonian is

H =
h̄

2

 0 Ωp 0
Ωp 2∆ Ω
0 Ω 2(∆− δ)

 . (2.3.18)

Here the rotating wave approximation has been applied, so that fast rotating terms are neglected.
The diagonal elements of the Hamiltonian describe the energy associated with each state,

while the off-diagonal elements describe the energy of the dipole coupling between the states.
Thus, the transition from ground state to intermediate state is driven by Ωp, while the same is
true from the stimulated decay back from the intermediate state.

For a system with the Hamiltonian described in equation 2.3.18, the wavefunction is

Ψ(t) = cg(t)|g〉+ ce(t)|e〉+ cr(t)|r〉, (2.3.19)

where the states |g〉, |e〉, |r〉 are time independent and the probability amplitudes cg(t), ce(t), cr(t)
includes all information about time dependence and phase of the states.

With the Hamiltonian given in 2.3.18, this yields three coupled differential equations de-
scribing the time evolution of the system.

i∂tcg =
Ωp

2
ce(t), (2.3.20)

i∂tce = ∆ce(t) +
1

2
(Ωcr(t) + Ωpcg(t)), (2.3.21)

i∂tcr = (∆− δ)cr(t) +
Ω

2
ce(t). (2.3.22)

In the case where the detuning from the intermediate state, ∆ is large, so that Ωp,Ω� ∆ but
the detuning from the two photon resonance is δ is small, ce(t) is always well in equilibrium
compared to the two other parameters with much slower dynamics. This is due to ∂tce(t)
depending on the very large ∆. Hence ce will to first order be constant, and setting ∂tce(t) = 0
yields

ce(t) = −(Ωcr(t) + Ωpcg(t))

2∆
. (2.3.23)

The time evolution of cg(t) and cr(t) then becomes

i∂tcg(t) = −|Ωp|2
4∆

cg(t)−
ΩpΩ

4∆
cr(t) (2.3.24)

i∂tcr(t) = −ΩpΩ

4∆
cg(t)−

|Ω|2
4∆

cr(t) + (∆− δ)cr(t). (2.3.25)

These equations also governs the dynamics of a two-level system. The driving field then has the
effective Rabi frequency

Ωeff =
ΩΩp

2∆
. (2.3.26)
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Neglecting the intermediate state on the assumption that it is always in equilibrium is called
adiabatic elimination [36, 26]. The adiabatic elimination of the intermediate state is only an
approximation. For the system described in this thesis, the intermediate state cannot be fully
neglected. Though the population is suppressed by the large detuning ∆, the intermediate state
still offers a decay channel for the Rydberg state. Thus there will be spontaneous Raman decay
via the intermediate state |e〉 with decay rate given by

Γ =
Ω2

(2∆)2
Γe, (2.3.27)

where Γe is the decay rate of the intermediate state [26]. This means that for the effective two-
level system, the decay of the excited Rydberg state depends on the decay of the intermediate
state.

2.4 Two plus one level system strongly interacting with light

To investigate how the superatom affects the electric field, the space and time dependence of
this must be expressed. With the time dependent electric field and the density matrix elements,
the dynamics of the two plus one system interacting with the field can be described. In chapter
5 the model of the interaction derived below is compared to the experimental results.

As described above, the superatom behaves as a single two plus one level system. The
dynamics of this system can now be described with a model. The model is described in the
master thesis of Christoph Braun [37] and in [19]. The model was developed by Jan Kumlin and
Hans Peter Büchler from Universität Stuttgart.

This model is an extension of the one described in section 2.1. The main difference is the
treatment of the driving electric field, which here is treated quantum mechanically. Further, due
to the two-level system now being a superatom, the coupling to the light field is strongly enhanced
for a specific mode, namely the Gaussian mode defined by the probe beam. The coupling to all
other modes is well described by the spontaneous decay term as introduced in section 2.1. This
makes our system identical to a waveguide system, where the coupling to a single (waveguide)
mode is strongly enhanced through the confinement of the light. An important aspect both of
our free-space system and waveguide systems is that the strongly coupled mode is a traveling
wave, in contrast to cavity quantum electro-dynamics, where this is a stationary mode.

The Hamiltonian of the field, atom and field-atom interaction with the two plus one level
superatom placed at x = 0 is given by

H =
1

2π

∫
dk h̄cka†k(t)ak(t) + h̄

√
κ
(
E(0, t)σ†GW + σGWE

†(0, t)
)
. (2.4.1)

Where σGW = |G〉〈W | is the transition operator bringing an atom from the excited state to the
ground state. The coupling strength is given by

√
κ = gcol/2.

This Hamiltonian is the same as in section 2.1, except that the atomic part is not written
out, as atomic part vanishes in the rotating frame for ∆ = 0. The Hamiltonian then contains
the energy of the field in the first term, and the interaction between the field and the atom as
the second term.

The traveling quantized electric field for all modes is

E(x, t) =

√
c

2π

∫ ∞
−∞

dk eik·xak(t). (2.4.2)
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Here ak is the annihilation operator for a photon in the k’th mode. In order to see how the
electric field evolves in time as it interacts with the superatom, it is necessary to find the time
dependence of the annihilation operator, and the expectation values of the atomic operators.
The annihilation operator follows from the Heisenberg equation of motion:

∂tak(t) = − i
h̄

[H, ak] = −ickak(t)− i√κc σGW (t), (2.4.3)

where the last equality follows from the commutator rules for ak with itself and a†k. [ak, a
†
k] = 1,

and therefore these terms remains in the equation of motion.
Integrating over time from some initial time in which the state of the system is known, t0,

to the time of interest, t, yields

ak(t) = e−ick(t−t0)ak(t0)− i√κce−ick(t−t0)

∫ t

t0

dt′ e−ick(t′−t0)σGW (t′). (2.4.4)

For convenience we set t0 = 0, and hence the electric field with the expression for the annihilation
operator,

E(x, t) =
1

2π

∫ ∞
−∞

dk ak(0)e−ickt+ik·x − i√κ
∫ t

0
dt′
∫

dk

2π
e−ick(t−t′)+ik·xσGW (t′). (2.4.5)

The first term does not interact with the superatom: it ’passes by’ without experiencing a
change. Therefore, this part can be collapsed to a noninteracting term, Ē(ct − x). Assuming
the incoming field to be coherent, the coherent field amplitude is defined α(t) = 〈Ē(t)〉. This
field amplitude relates to the incoming coherent field as |α(t)|2= Rin.

The last, inner integral reduces to a delta function δ(t− t′−x/c), and the outer integral then
has the shape of a Heaviside step function, denoted Θ. The Heaviside function is defined such
that Θ(0) = 1/2. The step function is usually given by the integral from −∞ to some value t,
whereas the outer integral in this case goes only from 0. This is handled by subtracting another
Heaviside step function from −∞ to 0, which again corresponds to multiplying two Heaviside
step functions, such that

E(x, t) = Ē(ct− x)− i√κσGW (t− x/c)Θ(x)Θ(ct− x) (2.4.6)

= Ē(ct− x)− i
√
κ

2
σGW (t− x/c). (2.4.7)

For the last equality the approximation that the superatom is a zero-dimensional system has
been applied, setting Θ(x) = 1/2. Assuming the state of the incoming field is known all the way
up to the superatom, but not after, Θ(ct − x) will be one for all times and positions after the
superatom.

The expression for the electric field, equation 2.4.7, still contains the atomic operator σGW .
To find a value for σGW , the atomic time evolution is considered by studying the equation of
motion of an operator A(t) interacting only with the superatom.

The equation of motion for this operator becomes

∂tA(t) = − i√κ
(
Ē∗(t)[A(t), σGW (t)] + [A(t), σ†GW (t)]Ē(t)

)
(2.4.8)

− κ

2

(
[A(t), σ†GW (t)]σGW (t)− [A(t), σGW (t)]σ†GW (t)

)
. (2.4.9)

Equation 2.4.9 can be divided in two, a part regarding the coherent interaction, and a part
which is dissipative, as described in equation 2.1.8.
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For this operator, and with the coherent field amplitude, the effective Hamiltonian becomes

H0(t) = h̄
√
κ(α∗(t)σGW + α(t)σ†GW ). (2.4.10)

The effective Hamiltonian is responsible for describing the coherent part of the equation of
motion, while the dissipative part can be rewritten to the Lindblad form,

κL[σGW ]ρ(t) = κ

(
σGWρ(t)σ†GW (t)− 1

2
{σ†GWσGW , ρ(t)}

)
, (2.4.11)

where ρ is the density matrix and {· · · , · · ·} denotes the anti-commutator, defined as {A,B} =
AB +BA.

This relation is seen by using that whatever picture of quantum mechanics is used for cal-
culations, the results must describe the same physical picture. Hence considering the time
dependence to belong to an operator or a state must be equivalent, and we can write

∂t〈A〉 = Tr(∂tA(t)ρ) = Tr(A∂tρ(t)). (2.4.12)

The expectation value of the operator A is given by the trace of the operator applied to the
density matrix - independently of where the time dependency is placed. The time dependency
is moved by transforming between the Heisenberg and the Schrödinger picture with the unitary
operator U = exp(−iH(t − t0)/h̄), which is sandwiched onto operators so that A(t) = U †AU ,
and ρ(t) = U †ρU . Writing out Tr(A∂tρ(t)), one finds

Tr(A∂tρ(t)) = Tr

[
κA

(
σGW (t)ρ(t)σ†GW (t)− 1

2

{
σ†GW (t)σGW (t), ρ(t)

})
− i

h̄
A[H0(t), ρ(t)]

]
,

(2.4.13)

The above holds for the full density matrix, but the part concerning the envir

∂tρ(t) = κ

(
σGW (t)ρ(t)σ†GW (t)− 1

2

{
σ†GW (t)σGW (t), ρ(t)

})
− i

h̄
[H0(t), ρ(t)]. (2.4.14)

With the equation of motion at hand, the expectation value of the outgoing field can be written
as an expression of the expectation values of the atomic operators.

〈E(t− x/c)〉 = α(t− x/c)− i√κ〈σ(t− x/c)〉Θ(x/c) (2.4.15)

More interestingly, the actual outgoing field is given by the expectation value of the norm square
of the field operator, namely

〈E†(t− x/c)E(t− x/c)〉 = |α(t− x/c)|2+κ〈σ†GW (t− x/c)σGW (t− xc)〉Θ(x/c) (2.4.16)

− i√κ
(
α∗(t− xc)〈σGW (t− x/c)〉 − α(t− x/c)〈σ†GW (t− x/c)〉

)
.

(2.4.17)

This is the general set of equation governing the behavior of a two-level system interacting with
an electric, coherent field. The system can be solved analytically in the case where there is no
decay [19, 38].

To get the full behavior dephasing into the dark states and spontaneous emission into other
modes than the incoming mode are added by hand, and the master equation becomes

∂tρ(t) = − i
h̄

[H0(t), ρ(t)] + (κ+ Γ)L[σGW (t)] + γDL[σDW (t)] + ΓL[σGD(t)] (2.4.18)
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Now the atomic operators σ are taken for three different transitions, as indicated by the different
subscripts. Recalling that σAB = |A〉〈B|, the three terms with the Lindblad operator handles
decay of the Rydberg state with spontaneous emission of a photon into the foreward direction
with rate κ and decay of the Rydberg state to an arbitrary mode with rate Γ. The second term
handles dephasing from the Rydberg state into the manifold of dark states with rate γD. The
last term contains the spontaneous decay of the dark states back to the ground state. The dark
states and the Rydberg state decay spontaneously with the same decay rate, as they are both
excited states.

The model given above with the included decay and dephasing can be used for simulating the
system. Such simulations have already been shown for a superatom comparing the two photon
correlation function measured in experiments to the model [19]. A similar comparison of the
theory and the experimental results are shown in chapter 5.

To summarize on this chapter after introduction of the general interaction between a two-
level system and a driving light field and an introduction of Rydberg physics, we show how a
Rydberg superatom consisting of N atoms exhibits enhanced coupling to a driving field with a
factor of

√
N . This coupling also shows up in the spontaneous emission from the excited state

into the driving field mode. This decay is enhanced with
√
N as well, while the spontaneous

decay to an arbitrary mode remains the decay of a single atom. Due to the enhancement of
field coupling, it is possible to study the interaction of the superatom two-level system with
a few photon probe, and therefore the initial description of a classical light field coupled to a
two-level system is extended to a description with a quantized electric field. This shows that
for a waveguide system coupled to a driving field with coupling constant

√
κ both the coherent

term and the dissipative term depend on κ as
√
κ and κ respectively.
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Chapter 3

Experimental realization

In the scope of this thesis, a setup for the realization of a superatom was implemented as an
addition to an existing experimental setup. In this chapter, a brief review of the theory of laser
cooling and trapping will be given, along with a short description of our experimental procedure.
The full existing experimental setup is well described elsewhere [39, 40], therefore only the main
points of the experimental procedure will be described.

Laser trapping is applied to position the atoms for observation. At the same time, an
extensive scheme of laser cooling is applied to reduce the thermal motion of the atoms to a level
where they move less than the wavelength of the field of interest during the time of the pulse,
thereby minimizing Doppler broadening.

3.1 Preparation of experiment

The preparation of an experiment requires the following steps:

• Cooling in a magneto optical trap (MOT)

• Raman sideband cooling and evaporative cooling in a dipole trap

Further, as it will be discussed in chapter 4, a secondary dipole trap is used to confine the atomic
cloud even further in order to realize a Rydberg superatoms.

The preparation produces a cigar shaped cloud of ultracold rubidium gas in a dipole trap,
which suspends the cloud in ultra-high vacuum.

The atomic cloud is loaded from a room temperature gas of Rubidium in the vacuum cham-
ber. The gas is mainly 85Rb and 87Rb in natural abundance relation provided by electrically
heated dispensers. The pressure of the gas is 2× 10−10 mbar. From this background gas a
magneto optical trap (MOT) is loaded; it contains only 87Rb atoms due to the laser frequencies
applied.

3.1.1 MOT

The MOT provides a dissipative and a conservative force on each atom. The dissipative force
slows the atoms, while the conservative force provides a trap.

The dissipative force is provided by pairs of counterpropagating laser beams. The frequency
of the laser is red detuned from an atomic resonance. Due to the Doppler effect, atoms traveling
in a detuned field will experience a shift in the field frequency depending on their velocity. Atoms
within a certain velocity range will interact strongly with the light, as they experience it shifted
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to resonance. This velocity range is determined by the detuning and by the bandwith of the
laser.

A red detuned laser beam will slow the atoms, since momentum is conserved in the excitation
process, but not in the subsequent de-excitation, where the direction of the spontaneously emit-
ted photon occurs in random direction. Due to this random direction of spontaneous emission,
the mean contribution from reemission is zero, while momentum contribution from excitation is
in the opposite direction of the atom movement, hence the atom is slowed by the interaction.

The light fields of a MOT which serves to cool the atoms does not provide any trapping.
Hence atoms which have been slowed down by the light of the MOT, are not confined and will
eventually, by random walk, exit the MOT volume. This slowing effect with detuned light is
referred to as optical molasses.

In order to produce a trap, a force which depends on the position of the atoms is also needed
to keep the slow atoms at the position of interest. Such a conservative force can be introduced by
making the light-atom interaction depend on their position. To do this, a quadrupole magnetic
field is applied. The Zeeman effect causes a splitting in the mF -levels of each state, which are
otherwise degenerate. Due to the spatially varying quadrupole magnetic field, the splitting of
the levels will be position dependent

With the spatially varying splitting of the levels, the levels are only degenerate where the
magnetic field is zero. The mf -levels are sensitive to polarization of light. By choosing the
circular polarization of the light in each MOT beam, it is possible to choose which σ±-transitions
is driven by the specific beam. This means that the trap can be setup so that atoms which are
far from the center of the trap, but still in the capturing light will scatter more strongly on light
propagating towards the trap center.

To get three-dimensional cooling and trapping, the optical part of the MOT comprises six
pairwise reflected beams at right angles, and the magnetic field is a quadrupole field. The MOT
beams are all intersecting in the center of the magnetic field.

For a MOT, the capture velocity is related to the velocity range of atoms addressed by the
laser beams. Atoms faster than the capture velocity are not trapped, as they will experience
the light detuned too far from resonance to interact strongly with it.

In the setup described here, the laser frequency is detuned to the D2 transition in 87Rb,
which is a closed transition.

3.1.2 Optical dipole trap

After loading the MOT for around 1.3 s it contains around 5× 106 atoms, which are loaded into
an optical dipole trap, in which they are kept for most of the experimental procedure. The
trapping beams of the optical dipole trap are illustrated in figure 3.2.

To load the optical dipole trap, the trap is on in the center of the magneto-optical trap, which
is then turned off. The trapping beam is crossed at an angle of 32◦. They are focused at the
crossing point where a potential minimum in the trapping potential is formed as a consequence.
This trapping potential results in an elongated atomic cloud.

The dipole trap is far detuned from resonance as it is operated at wavelength 1070 nm. The
operation power of the trap is relatively high, up to Podt = 11 W in the beams. The dipole trap
in this experiment addresses the D1 and D2 transitions.

Dipole trapping relies on the interactions between induced atomic dipole moments and the
intensity gradient of the field and not on radiation pressure as in the MOT. As the dipole
interactions are second order effects, the contribution to heating from the dipole trap is minimal
[41].
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Figure 3.1: Oscillations in dipole trap. a) Atomic cloud at different times after optical pumping.
Each slice is averaged over four images, and the spacing is 3 µs. The oscillations are taken from
top. b) Center of Gaussian fitted to the atomic cloud density profile (points). An exponentially
damped sinusoidal fit is shown as the line.

For a transition to a level with decay rate Γ and resonance frequency ω0, addressed by a
laser with frequency ω and intensity I, the dipole potential for this specific transition is

Udip(r) = − 3π

2ω3
0

Γ

ω0 − ω
I(r). (3.1.1)

Thus a deep potential is achieved if ∆ ≈ 0, where ∆ = ω0−ω. However, as the spontaneous scat-
tering rate scales with ∆−2I(r), the heating from scattering makes the limit ∆ ≈ 0 undesirable
for a trap [41].

In our case the main contributions stem from the D1 and D2 transitions. For these the dipole
trap potential becomes

Udip(r) ≈ 3πc2Γ

2ω2
0

(
2

∆2
+

1

∆1

)
I(r). (3.1.2)

Here the polarization of the light, which would affect the respective trapping for different mf

states, is not taken into account. ∆1,2 is the detuning from the D1,2 transition respectively.
The trapping potential of equation 3.1.2 can be approximated with a harmonic potential.

For the trapping parameters, the frequency of this harmonic potential can be calculated. For a
crossed dipole trap, the angular trapping frequencies are νx = 2π · 0.71 kHz, νy = 2.5 kHz and
νz = 0.71 kHz, where z is along the probe, y is in the plane spanned by the dipole trap beams
and x is out of this plane, and are calculated for the maximal value of power in the dipole trap
beams. Thus they are the maximal achievable trapping frequencies, and the frequencies of the
trap during experiments are often lower.

Oscillations of the atomic cloud in the trap can be observed experimentally. To show the
oscillations, the time after repumping between hyperfine levels is varied. The optical pumping
introduces a momentum kick to the cloud, which will yield an oscillating atomic cloud. The
oscillation frequency is characteristic for the trap. The oscillations are damped out over time,
due to interactions between the atoms in the cloud. Both the oscillations and the damping effect
are clearly observed in the dipole trap. An example of these effects is presented in figure 3.1
a), which shows the oscillations over time for a the first oscillation peak, and figure 3.1, where
the points show the center of atomic cloud as a function of time. The center is fitted with a
Gaussian. The solid line shows a damped sinusoidal fit to the center.
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The fit yields a trap frequency of νz = 0.11 kHz, which is much lower than the expected
trapping frequencies calculated for the dipole potential. However, the images are taken after
evaporative cooling, where the power in the dipole trap is ramped far down and only somewhat
up again, and therefore this low value is not unexpectedly low.

The evaporative cooling is one of a number of steps used to cool the atoms in the dipole
trap further. Firstly, a Raman sideband cooling (RSC) scheme is applied, which allows cooling
without loss of atoms. RSC is followed by an evaporative cooling scheme, where the optical
dipole trap is ramped down with three different rates to allow fast atoms to escape the trap,
while the coldest atoms are left behind. The trap is ramped back up.

This process leads to a temperature of 5.9 µK and trap dimensions 60 µm along the probe
and 15 µm in the other two directions where the dimensions are measured as the 1/e-width of
the Gaussian density profile of the atomic cloud. This atomic ensemble can then be used for
experiments, as described in the following.

After the cooling state, the atoms are then optically pumped into the mF -level which is
addressed by the probe light. It is this optical pumping light which is used to kick the atoms to
show the oscillations of figure 3.1.

3.2 Experimental procedure

After the preparation described above, experiments are performed on the atomic ensemble with
a weak light field, the probe, and a counterpropagating strong control field. The two fields are
focused to waists of 6.2 µm and 14 µm respectively. The foci are overlapped with the center
of the dipole trap Figure 3.2 b) illustrates how the dipole trap beams crosses in the vacuum
chamber, and how the probe and control light goes through the atomic ensemble caught in this
the trap.

The system is driven with the transition from the ground state |5S1/2, F = 2,mf = 2〉 to
|111S1/2, J = 1/2,mj = 1/2〉 through an intermediate state |5P3/2, F = 3,mF = 3〉. The probe
wavelength is wavelength 780 nm and a strong control beam is of wavelength 479 nm.

The van der Waals coefficient of this state is calculated to be C6 = 1.88× 105 GHz µm6 with
the Pair Interaction software[28], and the Rabi frequency of the control field is Ω = 2π12 MHz.

The probe pulse has a Tukey-shape. This shape is chosen because it has a long constant part
and the rise and fall times are long enough to avoid too much Fourier broadening. The Tukey
shape is defined by

f(t, trise, tup) =



1
2

{
1 + cos

(
π

[
t+trise+

tup
2

trise
− 1

])}
if − trise − tup

2 ≤ t < −tup/2

1 if − tup

2 ≤ t <
tup

2

1
2

{
1 + cos

(
π
t+

tup
2

trise

)}
if

tup

2 ≤ t < trise +
tup

2

0 otherwise.

(3.2.1)

The parameters trise and tup determines how sharply the pulse rises and how length of the flat
part of the pulse respectively. For the pulse we usually use, the up time is 5 µs and the rise time
is 0.8 µs .

Each atomic medium is recycled over 1000 experiments. The experiments are performed
within a time of 100 ms. For each experiment the optical dipole trap is turned off for 14 µs
during probing. After probing the dipole trap is turned back on, recapturing the atoms.
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Figure 3.2: Schematic illustration of the laser setup. a) Setup of probe and control laser with a
single superatom. 1) is the probe light, which is narrowly focused down onto an atomic cloud,
3), which is all within a single Rydberg blockade radius (illustrated with the yellow sphere).
The probe light goes through a 50/50 beam splitter, which sends the light into two Hanbury
Brown Twiss setups, which again each contains a 50/50 beams plitter. The light is detected by
four single photon counting modules (SPCM), 6a) and 6b). The control light is propagating in
the opposite direction of the probe light, entering at 4 and leaving at 2, and it is overlapped
with the probe beam with dichroic mirrors. b) Laser beams inside the vacuum chamber. Two
dipole trap beams, 7a) and 7b), are crossed, trapping an atomic cloud 10)(large dashed ellipse)
in the intersection. The counterpropagating probe, 8), and control, 9), lasers are focused on the
center of the atomic cloud. A third trapping beam can be overlapped with the dipole trap 11).
This trap further confines the atomic cloud, yielding a smaller, denser cloud 10) (small dashed
ellipse), called a dimple. Depending on the detunings of probe and control, the dimple can be
tuned to the superatom regime.

After each measurements any remaining Rydberg excitations are removed with a field-
ionization pulse. For the superatom, which hosts only a single excitation, the field ionization
pulse removes a single atom from the medium.

Since atoms are removed with this field-ionization from the atomic cloud after every ex-
periment, the atom number in the cloud will decrease over time. To avoid this, the optical
dipole trap intensity is ramped up over the 1000 experiments with a slope that gives a constant
absorption of the probe at resonance with the intermediate state and without control field.

After the 1000 experiments the atomic cloud is released and 1000 reference experiments are
performed without any medium. To ensure that the atoms have fully evaporated before the
reference experiments, these are only performed after 10 ms wait time with trapping and cooling
light off.

The setup of the probe and control light is illustrated in figure 3.2 a). In the figure, it is
assumed that the experiment is configured so the atomic cloud is already confined by a second
trap in addition to the dipole trap, yielding a smaller atomic cloud. In the next chapter, the
setup of such a trap is described.

The probe signal is detected on four single photon counter modules (SPCM) in an extended
Hanbury Brown Twiss setup with three 50/50 beam splitters distributing the light equally on
the counters. This detection scheme is shown in figure 3.2 a). The quantum efficiency for the
four counters is approximately 64 %.
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Chapter 4

Dimple setup

In section 2.3, the Rydberg superatom was introduced. To experimentally realize an atomic
medium confined within a given Rydberg blockade sphere, thereby enabling the creation of a
Rydberg superatom, a second trapping setup is implemented in the experiment described in
chapter 3.

The experimental preparation described in chapter 3 produces a cigar shaped atomic cloud
with 1/e radial and axial radii of 15 µm and 60 µm respectively. This oblong cloud can further be
overlapped with other, more tightly focused laser beams perpendicular to the probe axis. In the
scope of this thesis, the setup for producing these additional traps was assembled and integrated
with the existing experimental. The additional traps, the dimple traps, will be discussed in the
following.
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Figure 4.1: Setup of dimple trap. a) Viewed from top. b) Viewed from the side. The elements
are 1) a fiber outcoupler, 2) the acusto-optic deflector (AOD), 3a) and 3b) a telescope of cylindri-
cal lenses serving two purposes, namely to enlarge the beams in the y-direction in order to focus
them more to more narrow spots when they pass through the focus, and to make the diffracted
beams from the AOD parallel, 4) a half wave plate, polarizing the light of the dimple trap so
they are transmitted through 5), which is a polarizing beam splitter, and 7) the objective. The
objective is focusing each beam tightly down onto the atomic cloud in the dipole trap inside the
vacuum chamber 8). The polarizing beam splitter is used to reflect the imaging light 9) out of
the dimple beam path and on to a camera 6). 10) A periscope is used in the setup to lift the
beams and to give alignment freedom. 11) is the atoms in the dipole trap viewed from the side.



28 DIMPLE SETUP

Imaging from top

Imaging along dimple
trap beams

Vacu
um

ch
amber

Dim
ple beams

Probe beam

Objective

Polarizing
beam splitter

1
Figure 4.2: Sketch of setup showing the two currently available directions of absorption imaging.
Imaging along dimple trap beams refer to absorption imaging with light counterpropagating the
dimple beams. The imaging light is number 9 in figure 4.1, and it is reflected out of the dimple
beam path by the polarizing beam splitter, which is number 5 in figure 4.1, and onto a camera.
Imaging from top refers to absorption imaging with light coming from below the vacuum chamber
and being detected on a camera above the chamber. An atomic ensemble in the optical dipole
trap is drawn in yellow, and two overlapped dimple traps are marked with purple.

4.1 Setup

The setup for the dimple trap, figure 4.1, consists of an 805 nm laser beam, tightly focused with
an objective onto the dipole trap. Before the telescope, the light passes through an acusto-optical
deflector (AOD). With the AOD, the position of the first diffraction order in the direction along
the probe can be controlled by the frequency of the applied radio-frequency field. The AOD can
also, if multiple radio frequencies are applied, split the beam in multiple spots corresponding to
the frequencies. Introducing the AOD gives the setup considerable versatility, as it can produce
both single and multiple dimple traps, and as the position of the dimple beams in the z-direction
as defined in figure 4.1 to some degree can be controlled individually.

In order to get a trap confining an atomic ensemble to a volume defined by the Rydberg
blockade radius, the beam is enlarged in the direction along the probe beam with telescope of
cylindrical lenses. The telescope also serves the purpose of making the outgoing beams of the
AOD parallel to the each other.

To have an alignment tool for the position of the dimple beam with respect to the crossed
optical dipole trap, a periscope is inserted which raises the height of the beam from 5 cm to
12.5 cm at which all experiment optics are mounted. However, this periscope can introduce
aberrations in the optics which can lead to problems with the trapping potential.

The beams for the dimple trap enter the vacuum chamber along an axis which is also used
for imaging. The imaging light is counter propagating to the dimple beam, and therefore a
polarizing beam splitter cube and a half-wave plate are introduced in the beam path, so that
the imaging light is reflected onto a camera before the periscope while the dimple beam is allowed
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Figure 4.3: Size of dimple trapping beams and resulting atomic clouds. a) Imaging of three
dimple beams focused onto the Raspberry Pi camera module. b) Gaussian fit estimating the
beam size of the beams in a). c) Two atomic clouds in dimple traps imaged with absorption
imaging from top, as defined in figure 4.2, averaged over 10 images. The dimple trapping beams
come from the bottom of the image. The two atomic clouds are so dense in the center of the
image because they are confined by the optical dipole trap. d) Gaussian fit estimating the size
of the atomic ensembles.

to pass.
In the following sections, each component is described, and the alignment of the setup is

discussed.

4.1.1 Laser

The dimple traps are produced with an amplified 805 nm laser. This wavelength is chosen as a
compromise between having a far-detuned laser to minimize heating and having a wavelength
close to resonance and hence allowing imaging and trapping through the same objective. As the
position of focus depends on the wavelength, meaningful imaging can only be done through the
same optics when the trapping and the imaging wavelengths are not too far apart. Further the
required power is not very high. The dimple trap presented here holds around 20 mW. As some
light is clipping at the chamber, very high powers are not useful for the dimples.

The imaging along the dimple trapping beams are shown in figure 4.2.

4.1.2 Objective and telescope

The objective used for focusing the dimple beam down on the dipole trap has been used for
imaging in this direction as well as for an earlier iteration of the dimple trap, and has an
effective resulting in an effective focal length of 79.5 mm [19, 42].

A telescope is used to enlarge the beam in z-direction as defined on figure 4.1 while the size
of the beam in y-direction as defined on figure 4.1, is determined by the spherical lens with focal
length f = 6.25 mm that collimates the beam from the fiber. In this coordinate system, the
probe propagates along the z-axis, and the dimple beam propagates along the y-direction.

The initial testing of the objective was done with a Raspberry Pi camera module, which was
used to determine the beam size and other properties, while the absorption imaging was used
in the actual setup to give estimates of the same values.

The telescope was initially planned to contain a lens of focal length f = 75.6 mm and a
lens of focal length f = 500 mm, but due to space constraints on the main experiment table,
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the second lens was changed to a lens of focal length f = 300 mm when the dimple trap was
integrated with the existing experiment. This means that there is a small difference between
the spot sizes measured on the Raspberry Pi camera module and the size on the dimple trap.

With the f = 500 mm lens in the telescope, the waist was calculated to be 5.3 µm in the
narrow direction. The waist in the wide direction was calculated to be 26 µm. These results
compare relatively well to the beam size deduced from images on the Raspberry Pi camera
module, as shown in figure 4.3. The fit results in a beam radius (1/e2) of 7.4 µm, and a beam
height of 26.5 µm. These difference arises from alignment.

With the final telescope, the objective yields a beam with waist size wz = 8.9 µm in z-
direction and wx = 29 µm. The size of the spots for the final telescope was only investigated
indirectly, as the change of telescope was done at the experimental table. For the final imaging,
the interesting parameter is the extend of the atomic medium in each dimple trap. The dimple
beam size is only one out of a number of parameters determining the number of atoms in each
dimple. The other parameters include intensity in both the dimple trapping laser and the dipole
trap laser, as well as loading time of MOT, time of flight, evaporation cooling parameters, etc.

Beam distortion

Proper alignment of the objective is key to the quality of the experiments. If the beam passes
through the objective with a tilt or off centered, it results in a variety of deformations of the
beam shape. This is demonstrated in figure 4.4.

There are a number of things worth noticing in figure 4.4. Firstly, in figure 4.4 a) the three
spots which in the first line image are clear, narrow lines, evolves into a split beam shape with
substructure as the camera is moved out of the point of focus. This evolution, which starts with
the clear, narrow line, goes through first a state where each spot seems to have a companion
spot on each side (second line), then it is divided into a cloven hoof shape (third line), and in the
fourth line, the three spots have gained butterfly shapes. In this butterfly shapes, some further
substructure can be seen.

The distortion of the beam is also different for each spot, though the differences are minor.
One notices however that the spot on the right seems to have a stronger right toe (remaining in
the cloven hoof picture) in line three. For the left spot, the left toe is stronger. This indicates
that some distortion is due to the point where the beams hit the objective.

The amplitude in each of the three spots is different, which can either be due to the AOD
not providing exactly the same power in each diffraction, or due to background light. One also
notices that the three beams evolve only to the left. This is assumed to be due to the stage of
the camera not being aligned with translation exactly along the beam.

Considering the images in figure 4.4 b), which are from absorption imaging, it is clear that
the distortion of the beam will be reflected in the resulting atomic cloud.

4.1.3 Acousto-Optic Deflector

For the Acusto-Optic Deflector (AOD), an element from AA Opto-Electronics1 is used. The
AOD contains a crystal of TeO2, and the light passes through an axis of the crystal, where the
speed of sound is 650 m/s.

The crystal is driven with radio frequency by a piezo inducer. Depending on the radio
frequencies applied, the angle of diffraction in one plane varies. In principle there is no limit to
the number of frequencies applied. In the setup described here, up to four frequencies can be

1Model DTSX-400-800
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Figure 4.4: Spot deformations out of focus. a) on the Raspberry Pi camera module, moving the
camera away from the point of focus. Between the images, the camera was moved on the order
of 0.4 mm on a translation stage. b) in absorption imaging of the plane spanned by probe and
dimple beam. A resonant laser is used to blow away atoms in the dipole trap. The scull-shape is
due to the same cloven hoof-shape as in a). This image is averaged over 6 images. c) Distortion
as seen with absorption imaging along the dimple beam. Multiple smaller traps are formed by
three trapping beams.

used. The diffractions have already been shown in figures 4.3 and 4.4. On these figures three
laser beams are shown as seen by the Raspberry Pi camera module, and two atomic clouds are
seen as a result of overlapping the dimple trap beams with the optical dipole trap.

Figure 4.5 shows the position of spots as a function of applied frequency. As the line shows,
the position depends at least to a very good approximation linearly on the applied frequency.
The AOD is specified to have a linear dependency of the diffraction angle on the frequency of the
rf-field, and when investigating only the range of angles where the small angle approximation is
valid, the linear dependency of position on frequency is well supported. The frequency cannot
be used as a direct measure of the positions of spots, as these depend on the optics between the
AOD and the point of measurement.

The frequencies applied to the AOD are set by individual channels of a four channel DDS
board. Before applying the signal to the AOD, the signal from the individual channels are mixed
with a power combiner and amplified. This means that the intensity distribution in the dimple
beams can be well controlled.

The light intensity in each trapping beam is however also controlled by other factors, in-
cluding alignment of the AOD and frequency. There is a certain frequency dependence of the
diffraction efficiency, but since the atom number in the end is the figure of merit, and this also
depend on the alignment of the dimple trap on the dipole trap, the amplitudes are are chosen
based on absorption imaging and probe absorption scans rather than the measured power in
each diffraction order.

In the case where we are interested in more than one dimple traps, it is important that all
diffraction spots have the same intensity. It turns out that the intensity in each spot depends
on the number of frequencies applied, the total power in the situation where two frequencies are
applied is smaller than the sum of power for each frequency applied. Therefore when operating
two dimple beam the intensity in each is chosen to be only around one fourth of the maximal
intensity, as this gives approximately the same power in two beams together as the sum of two
independent beams.
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Figure 4.5: Beam position as a function of applied frequency. a) on the Raspberry-pi camera
module. Here four images are shown together. For the actual linear fit, these are four out of
a series of 33 images. For each image, a Gaussian is fitted to each spot in horizontal direction.
The centers of the Gaussian fits are used for a linear fit, shown as the dashed line. b) in the
absorption imaging, here in the imaging along the dimple trap, the position of the beam as
function of frequency is also well described by a linear dependency. Each slice is averaged over
6 images.

As all acousto-optic devices, the AOD introduces a frequency shift of the applied frequency.
This is not of great importance when considering the detuned trapping laser, but for align-
ment purposes, where an on-resonant laser replaces the far-detuned 805 nm trapping laser, it is
important to consider this shift.

4.2 Integration in existing setup

The objective is also used for the imaging, hence the setup also contains a polarizing beam
splitter cube and a half-wave plate, as shown in figure 4.1. The beams for the dimples enter the
chamber along the y−axis, perpendicular to the probe.

The main challenge of integrating the dimple trap setup with the existing setup is posed by
alignment of the dimple beam well on the optical dipole trap. The main tools of alignment is
the absorption imaging and single photon measurements. How to align with these tools will be
discussed in the following sections.

4.2.1 Alignment in absorption imaging

A single dimple beam is aligned on the dipole trap using the absorption imaging in the inde-
pendent direction. For this the 805 nm trapping laser is replaced by a laser on resonance, which
blows away the atoms in the dipole trap where the beam hits the cloud. By iteratively decreasing
the power in the resonant beam and realigning it on the cloud, a starting point for alignment
with the trapping laser is reached. Figure 4.6 a) shows the resonant laser cutting the dipole
trap in half as the power is increased. Figure 4.6 b) shows alignment of the dimple beam onto
the optical dipole trap. A well aligned dimple beam will together with the dipole trap produce
a trap deep enough to contain all the atoms that will otherwise be placed throughout the dipole
trap.

In figure 4.6 b) it is seen how a dimple beam which initially is just touching the dipole trap
will not have much an effect, but as the height of the beam is changed, fewer atoms will remain
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(a) 200 µm (c) 125 µm(b) 125 µm

Figure 4.6: Alignment procedures. All imaged from top as defined in figure 4.2. a) atoms in
the dipole trap are blown away with an on-resonant beam. b) alignment of dimple beam onto
dipole trap. Each vertical slice represents a different position with respect to the dipole trap. It
should be noted that this figure is sliced in the opposite direction of figure 4.5. When the dimple
trap is not well aligned, some atoms from the dimple trap will fill the dimple beam, while most
will stay in the dipole trap. As the alignment is improved, the dimple trap provides a deeper
potential than the dipole trap, and the atoms will preferentially fill the the dimple trap. Thus,
the dipole trap vanishes as the alignment is improved. c) dimple trap being cut by the probe
as the dimple beam is scanned over the dipole trap.

within the extent of the dipole trap, as seen in the second strip. The third and fourth strip
shows a well overlapped dimple beam where all the atoms are in the dimple trap.

In figure 4.6 b), the dipole trap offers some confinement to the last two lines. To find and
overlap the focus of the dimple trap with the dipole trap, the dipole trap is ramped relatively
far down so the atoms are somewhat free to distribute themselves along the dimple beam. This
alignment is complicated by the fact that misplacement of the objective alters the beam path.
This can cause a tilt in the beam, which is not necessarily easy to detect on the far side of the
vacuum chamber, where the beam has expanded. If the beam has a tilt when it is overlapped
with the dipole trap, and this is then ramped down, the atoms can slide along the dimple trap
beam under gravity. If the beam is far out of focus, the atoms are not very well confined, and
can slide due to gravity, giving a wrong impression of the position of the focus. In the current
experimental setup, we do not have imaging along the probe axis. Therefore, this tilt cannot be
observed directly, but the alignment must rely on the somewhat precise observation of the large
beam coming out on the backside of the vacuum chamber.

Though optimal alignment is important, as long as the focus of the dimple beam is well
overlapped with the dipole trap it is not crucial to achieve perfect alignment of the dimple
beam, since for even relatively large tilt angles the trap geometry will overrule the pull of
gravity. Furthermore, the experiments are performed within very short time after turning off
the dipole trap, and therefore the atoms cannot move very far.

Figure 4.6 c) shows the probe beam blowing away atoms in the center of the dimple trap. The
slices show frequency scans across the dipole trap. This is an important alignment tool. Figure
4.6 reveals an important point about the alignment procedure. Across the applied frequencies,
the cut becomes clearer, as seen in figure 4.6 c). This is a result of a rotation of the AOD
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(a) 125 µm (b) 125 µm

Figure 4.7: Dimple beams rotated with respect to the plane of the dipole trap. a) Horizontal
absorption imaging showing a scan of frequencies showing a rotation with respect to the large
cloud. The contour of the large cloud is outlined. A line 3.29◦ above horizon is plotted on top
to illustrate the tilt. The image is averaged over images for seven frequencies. Each of the spots
thus correspond to a frequency. For each spot, six images are averaged. The spots are from the
same measurement as is shown in figure 4.5 b). b) Shows the corresponding cloud, giving rise
to the outline in figure a). The cloud is not averaged over multiple images, and it has the same
color scale as a) to illustrate the difference in atom number in the dimple traps and in the dipole
trap. The apparent structure in the large cloud is an imaging artifact, arising from the imaging
through the same optics as is used for the dimple trap.

deflection axis around the dimple beam axis. This is in principle not a problem if only one
dimple beam is used, but it poses a problem for alignment of multiple dimple traps.

Alignment of multiple dimple beams is relatively complicated compared to alignment of a
single dimple beam, due to the extra degrees of freedom added by having two beams. Aligning
the plane of AOD deflections with respect to the plane of the dipole trap becomes difficult
through the combined effect of objective, periscope and AOD. This is mainly a problem because
the dimple beam height is smaller than the height of the optical dipole trap, as seen in figure
4.7 a). If the beams were higher than the dipole trap, the confinement provided by this would
make rotations of the diffraction plane less crucial. In future iterations, it might be convenient
to add an additional telescope to enlarge the beam perpendicular to the diffraction plane.

The problem of rotation is not of importance in the case when only a single diffraction order
is used, but it becomes a hindrance when more than one dimple beam is applied. It is also a
problem if the frequency applied to the AOD is changed, as this motion of the trap is tilted
compared to the dipole trap and the probe. A scan through the large trap is shown in figure 4.7
a). Here a clear rotation is seen with respect to the dipole trap beams, which are seen in figure
4.7 b).

Alignment of dimple beam on optical depth

Aligning the dimple beam well on the dipole trap creates a small atomic cloud. For the exper-
iments, it is critical that the probe beam is carefully centered on the atomic cloud, and since
the dimple beam is smaller than the optical dipole trap, it is not enough to have the dipole trap
centered around the probe, the dimple trap also needs to be aligned well on the probe.

The alignment of the dimple trap onto the probe beam can to some extent be done with
absorption imaging. The probe cutting through the dimple imaged from top as defined in figure
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Figure 4.8: Scans of transmission through atom cloud in the dimple trap as function of probe
detuning. The solid line is Lorenzian fit to the datapoints and the points are measured data. a)
The dimple beam is not centered well on the probe beam. b) the dimple is aligned in up/down
direction to get a symmetric OD. The spots are data points, normalized with reference pulse.
Errorbars show standard error of mean.

4.2 is shown in figure 4.6 c). For the imaging along the probe, this alignment becomes more
complicated however, since the oblong structure of the dimple trap along the imaging direction
makes it hard to image, as the atoms in the dimple beam obscure the view of the cut.

Instead of aligning on the imaging, it is instructive to change to few-photon pulses in the
probe instead of a high intensity probe. Scanning the frequency of the probe beam around single
photon resonance yields a broad absorption valley from which the optical depth (OD) of the
trap can be deduced. Such a scan is shown in figure 4.8. In figure 4.8 a), the dimple beam is not
well centered on the probe, and therefore the transmission dip is asymmetric. Careful alignment
of the height of the dimple leads to a symmetric transmission dip, as shown in figure 4.8. The
solid line is a fit, and the points show the measurements.

The optical depth of the dimple depends not only on the alignment of the dimple beam and
the dipole trap onto the probe, but also on a number of other parameters, such as intensities
in both the dipole trap beam and the dimple beam and the ramps of these, on the electrical
and magnetic fields and the optical pumping. In the end all these parameters determine the
final state of the atoms, and hence the temperature of the cloud and whether the atoms can be
addressed by the probe.

The position of the atomic cloud along the probe beam is not as critical as the up/down
alignment on this beam, but it is still affecting eg. the optical depth. Fortunately, the alignment
along the probe is made relatively easy by the fact that the AOD offers the opportunity to change
the position of the dimple beam by changing the applied frequency. A scan of the dimple beam
across the dipole trap is shown in figure 4.9. This corresponds to moving the dimple across
the dipole trap. This scan is done by overlapping the dimple beam with the dipole trap and
then ramping the dipole trap intensity off. This releases the atoms outside of the dimple trap.
The dipole trap intensity is then ramped back up, yielding further confinement of the dipole
trap. If the dimple trap is created outside of the dipole trap, it will not be loaded with atoms,
and ramping the dipole trap intensity off results in a release of the atoms. Figure 4.9 a) shows
the transmission dip for three different frequencies. The solid lines are fits, while the points
are measured values. The figure shows how different positions along the probe yields slightly
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Figure 4.9: Using the frequency applied to the AOD to change align the dimple trap on the
dipole trap. a) Frequency scan of the probe. The three sets of dots and lines corresponds to
three different frequencies of the dimple. The dots are data points, while the solid lines are
Lorentzian fits. The blue points and line are for frequency 100.5 MHz, the orange is 99 MHz and
the green is 102 MHz. b) Frequency scan of frequency applied to the AOD. This corresponds to
a move of the dimple trap across the dipole trap. The dipole trap intensity is ramped far down,
thus releasing atoms outside of the dimple trap. If the dimple trap is not well overlapped with
the dipole trap, only few atoms will be left to interact with the probe light. The scan shown
here is for probe light on resonance. The slopes of the absorption valley are slightly different.
This indicates that the dimple beam plane has a rotation with respect to the probing plane.
Errorbars show standard error of mean.

different transmission curves. Figure 4.9 b) shows a scan of frequencies at probe resonance,
showing how the dimple can be moved across the dipole trap.

4.3 Experiments with a single superatom

The results described in chapter 5, were measured with a single dimple trap where the probe
and control field detunings were selected to allow adiabatic elimination of the intermediate state
as described in section 2.3.1.

When the experiment described in chapter 3 is in the superatom configuration, a few things
are changed in the experimental procedure.

In 3.1.2, it was discussed how the atomic population oscillates in the dipole trap after optical
pumping. To get a homogeneous density distribution, it is therefore reasonable to introduce a
wait time between optical pumping and probing. This is not as critical for the the smaller, deeper
dimple trap. This trap does in fact not exhibit these characteristic oscillations on visible scales.
For the dimple trap, the frequency of oscillations is expected to me much faster, and the damping
is assumed to be much stronger, quickly bringing the atoms back to thermal equilibrium.

Because the dimple laser is not as far from the resonance frequencies, it is expected to cause
some heating and hence some loss of atoms in the dimple trap. Therefore, it is preferrable to
have only a short time between the optical pumping and the evaporation when the dimple is on,
than to keep the atoms long in the trap before evaporation.

For the experimental procedure presented in chapter 3, the intensity of the dipole trap is
ramped down during the evaporative cooling step. This becomes even more critical when dimple
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traps are considered.
If the dimple trap is created at the edge of the dipole trap, or if more than one dimple trap is

applied, it is essential that the dipole trap is ramped down before the probing. It is necessary to
release all atoms outside of the dimples, as there might otherwise be atoms left trapped outside
of the dimple trap. Though the number of such atoms is very low, they are not necessarily
within the blockade radius, and hence they can introduce a dramatic error in for instance the
number of measured ions.

The dipole trap is switched off during probing as described in section 3.2. The optical
depth decreases if the dipole trap is at a constant value between the pulses, as some atoms
are lost during the time when the trap is off, and as some atoms are lost when applying the
field ionization pulse. Therefore, the dipole trap intensity is ramped across the pulses thereby
increasing the density of fewer atoms.

The dimple trap is not ramped off during the probing because the switching of the AOD is
relatively slow compared to the switching off for instance an acusto optic modulator (AOM).
Though the AOM’s used in the experiment use the same crystal as the AOD, the different
devices rely on different optical axes of the birefringent crystal, with different sound velocities.
Keeping on the dimple trap during probing means that the Raman resonance will be slightly
shifted, as the depth of the trap potential has to be subtracted from the ground state energy.
This is however not a problem, as the Raman resonance is determined by scanning the probe
frequency around the resonance and choosing the peak based on this.

The dimple trap for this ramping scheme yields a single superatom. For the cooling pa-
rameters applied, the temperature of rubidium atoms making up the superatom is ≈ 5.9 µK.
This temperature is estimated from absorption imaging for different times of flight. In these
time-of-flight images, the shadow of the cloud is fitted in horizontal and vertical direction with
a Gaussian profile. From the expansion of cloud as a function of time-of-flight, the temperature
of the cloud can be estimated.

The one-dimensional Gaussian fits are also used to determine the horizontal and vertical
density profiles for the ensemble. The final ensemble has 1/e of approximately 6.5 µm along the
probe direction and 10 µm in y-direction as defined on figure 4.1. The size in the last direction is
deduced from the atom number from absorption imaging and optical depth to the probe beam to
be 21 µm. The optical depth to the probe is on resonance around 9.4. The dimple trap contains
around 24 000 atoms.

It should be noted that as the probe beam waist of 6.2 µm is smaller than the size of the
ensemble, the number of atoms from absorption imaging is not the number of atoms interacting
with light, and hence not the number of atoms which contribute to the collective effects.

The number of atoms in the intersection of the probe is estimated by considering the Gaussian
probe beam having a square intensity profile. The intensity is taken to be half the peak intensity
and the width of the square profile is two times 1/e2. Assuming the probe beam to be this
cylindrical beam intersecting a Gaussian density profile with the sizes from absorption imaging,
the atom-light interaction can be integrated over the beam-cloud intersection to give the effective
atom number. This is found to be 4300 atoms.

The van der Waals coefficient of the |111S1/2, J = 1/2,mj = 1/2〉 state is calculated to be

C6 = 1.88× 105 GHz µm6 with the Pair Interaction software [28]. The Rabi frequency of the
control field is Ω = 2π · 12 MHz. With these two parameters, the Rydberg blockade radius is
sufficiently large to block the entire medium.

For the experiments, the intermediate state of the superatom is adiabatically eliminated.
The adiabatic elimination is discussed in section 2.3.1. Here the control light is detuned from
the EIT resonance by single photon detuning ∆ = 2π100 MHz. This detuning is picked as a
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tradeoff between having long Rydberg state lifetime, as is the case for far off detunings, and
having a relatively high absorption, as is the case for small detunings. The probe laser is detuned
to be on Raman-resonance for the given control frequency.



Chapter 5

Three-photon correlation

In the previous chapters, the stage for the realization of a Rydberg superatom strongly coupled
to light is set. In chapter 2, the theoretical framework for this coupling is described, and in
chapters 3 and 4 our experimental realization of such a superatom is discussed.

With the superatom strongly coupled to a weak probe field it is possible to measure light
pulse modulations on single photon level. The probe light measured on four single photon
counter modules is shown in section 5.1. From this signal, correlation functions of photons can
be calculated, as discussed in section 5.2 where the two photon correlation function is presented.
Three-photon correlations can also be calculated from the experimental data, but as they depend
on three absolute times rather than two a transformation of the data to Jacobi coordinates is
introduced in section 5.3. In these new coordinates, the third order correlation can be plotted
and investigated. The correlation function is further compared to numerical simulations based
on the model presented in section 2.4.

The three-photon correlation function however includes also a signal from two photon cor-
relations with a third spectator photon. To determine the signal stemming exclusively from
three-photon correlations, the two photon correlation functions are subtracted from the three-
photon correlation function yielding the connected third order correlation function, as further
discussed in section 5.5. In the connected correlation function we observe the signature of three-
photon correlation. This is the first demonstration of clear structure in the connected third
order correlation function for photons interacting in a free space medium.

5.1 Results

As already mentioned in chapter 4, the signal measured is the outgoing probe pulse detected
on the SPCMs. The signal is measured in time bins of 20 ns and is further binned in the data
treatment. In figure 5.1 the time is binned to 40 ns. The time axis is defined so that t = 0 when
the Tukey pulse defined in 3.2.1 starts to rise.

The pulses are shown in figure 5.1 for multiple amplitudes along with the resulting outgoing
photon signal. The outgoing photon signals show clear Rabi oscillations in the photon rate
across the pulse. As the photon rate decreases, the oscillations become less visible as the Rabi
frequency decreases.

From the measurements at different amplitudes, three photon rates were chosen, a ’low’
photon rate of Rin = 3.4 µs−1, corresponding to a mean photon number of N̄ = 19.9 in each
pulse, an intermediate photon rate Rin = 6.7 µs−1, which corresponds to N̄ = 39.2 photons,
and a ’high’ photon rate of Rin = 15.2 µs−1, corresponding to a mean photon number of N̄ =
88.3 photons in each experiment.



40 THREE-PHOTON CORRELATION

0 2 4 6
Time (µs)

0

2

4

6

8

10

12

14

16

Ph
ot

on
ra

te
(p

ho
to

ns
/µ

s)

0 2 4 6
Time (µs)

0

2

4

6

8

10

12

14

16

Ph
ot

on
ra

te
(p

ho
to

ns
/µ

s)
Figure 5.1: Pulse modification by superatom. a) time trace of measured pulse with and without
superatom. The dashed lines are measured in the reference pulses and show the Tukey pulses
at different amplitudes. The bullets are datapoints for three different lines are measured in the
real pulses with a single superatom. b) Time traces for the three long measurements of the
same amplitude for three amplitudes.

For each of these values, a series of experiments as described in chapters 3 and 4 were
performed. To obtain sufficient statistical significance, we aimed for more than 900 times 1000
experiments for each photon rate.

5.1.1 Extraction of fit parameters

The time trace measurements shown in figure 5.1 were used to fit the parameters described in
section 2.3. With these parameters, theoretical simulations of the time evolution of a similar
system were performed, in order to compare the measured three-photon correlations with the
values predicted by theory [19].

The fits are shown in figure 5.1 a) and b) as orange lines. For the final figure, the model
was only fitted to the correlation measurements, but for the amplitude measurements shown in
figure 5.1, the parameters still yield qualitatively good fits.

As seen in the figure, the fits are not fully capturing the oscillations at the end of the high
photon rate pulses. This is mainly due to the system not being fully stable in time. For long
measurement times, the atom number will fluctuate due to even very small drifts in the setup.

For the fit shown in figure 5.1, the fit values are κ = 0.55 µs−1, γD = 1.49 µs−1, and Γ =
0.14 µs−1. This corresponds to the values of the master equation, equation 2.4.18, in section 2.4.
The variable κ determines the coupling between the superatom and a probe photon, Γ is the
spontaneous decay rate, and γD is the dephasing of the bright state of the superatom into the
dark states.

In comparison to earlier results, the coupling with the light has increased substantially, and
the same applies to the decay and dephasing terms, compared to the previous measurements on
a similar system [19]. The increased decay means that the probability of the superatom to emit
in forward direction will be lower. This probability is measured with the parameter β, which
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measures the fraction of the total emission that goes into the mode of the probe,

β =
κ

κ+ Γ
= 0.80. (5.1.1)

In the earlier experiment the parameter was 0.86 [19]. This difference can be assigned to the
slight differences between the previous and the current realization of a superatom, but also to
the fit, as discussed in section 5.1.

The fact that especially the late oscillations at high photon rates are damped too much in
the fits indicates that some dynamics of the system are not captured by the model. This could as
discussed be caused by fluctuations in atom number in the experiment. The fit parameters can
be tweaked to capture these late oscillations better, but this introduces unphysical oscillations
in the already fully damped low photon rate pulse.

5.2 Correlation functions

To investigate the interactions between photons, we measure the correlation function between
photons leaving the medium [16]. Correlation functions are used in many branches of physics,
from quantum field theory to classical statistical physics [15]. In quantum optics with Rydberg
atoms, two photon correlations are used to show both attraction and repulsion between photons
mediated by quantum nonlinear media [8, 30].

Three-photon correlations have been measured elsewhere, both in cavity systems [43, 44, 45],
and recently in a free space system [20], however in a system of propagating polaritons rather
than with a superatom. Through this work the correlation functions describe the modulation
introduced by the Rydberg superatom on the light pulse [].

To describe correlations between photons, we apply the quantum field theory correlation
function, which is defined analogously to the classical correlation function. For correlations
between an observable φ depending on a variable x, the correlation function of i’th order is
given by

g(i)(x1, x2, · · · , xi) =
〈φ(x1)φ(x2) · · ·φ(xi)〉
〈φ(x1)〉〈φ(x2)〉 · · · 〈φ(xi)〉

. (5.2.1)

This function is already normalized [15].
The expectation of the photon flux for the model from section 2.4, is 〈E†(t)E(t)〉 [19], and

hence it follows that the second order correlation function for photons is

g(2) =
〈E†(t1)E†(t2)E(t2)E(t1)〉
〈E†(t1)E(t1)〉〈E†(t2)E(t2)〉 . (5.2.2)

This second order correlation function gives the correlation between two photons arriving at
times t1 and t2 on the counters. In the experiment, the time trace of arriving photons are
measured with the four single photon counter modules. For each experiment, the correlation
function is found by counting when photons arrive within the same time bins on the counters.

Two photon correlation function

Figure 5.2 shows the measured g(2). The main feature of g(2) is the strong correlation line
along the diagonal, corresponding to two photon bunching [30]. The darker bands along the
two photon bunching line arise from the rearrangement of nearby photons into the peak. For
high photon rates g(2) shows strong oscillation structures, while for lower photon rates the main
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Figure 5.2: g(2) for tree different photon rates. The subfigures shown here correspond to a)
R = 2.5

√
3µs, b) R = 3.0

√
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√
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feature is broader, and the oscillations are slower. On the other hand, the signal is higher for
the low photon rate, as seen on the color map. This is due to the correlations being a relative
effect, and for the low photon rate, the relative pulse modulation is much stronger than for the
high photon rate case, hence the stronger correlation signal.

In figure 5.2 g(2) is plotted as a function of absolute times, g(2) = g(2)(t1, t2) . Often g(2) is
plotted as a function of time differences, so that g(2) = g(2)(t2 − t1) but this holds only for the
specific case of steady state [46]. Here the system does not go fully to steady state, which is also
seen in figure 5.2, where oscillations are seen along the diagonals. The oscillations again reflect
the oscillations seen in figure 5.1 a).

Three-photon correlation function

Following equation 5.2.1, the third order correlation function of photons for the system described
in the model is

g(3)(t1, t2, t3) =
〈E†(t1)E†(t2)E†(t3)E(t3)E(t2)E(t1)〉
〈E†(t1)E(t1)〉〈E†(t2)E(t2)〉〈E†(t3)E(t3)〉 , (5.2.3)

This equation gives the correlation between three photons arriving at t1, t2 and t3 on three
counters. In this setup, the correlation functions can be read off directly, as the photon detection
traces are measured on four single photon counters.

5.3 Jacobi coordinates

The third order correlation function g(3) is a four-dimensional data set, i.e. a value is assigned to
each time triple (t1, t2, t3). In order to image such a dataset in a meaningful way, it is instructive
to transform data in Jacobi coordinates [47]. Jacobi coordinates are often used for visualizing
many-body problems, because they offer an often more meaningful choice of coordinates for two
dimensional plots than absolute time or space coordinates.

The three-dimensional Jacobi coordinates consist of a center of mass coordinate R and two
relative coordinates η and ζ corresponding to a coordinate of relative distance between two of
three particles and a coordinate of distance between the last particle and the center of mass of
the other two respectively.

R =
1√
3

(t1 + t2 + t3), η =
1√
2

(t1 − t2), ζ =

√
2

3

(
t1 + t2

2
− t3

)
. (5.3.1)
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t1

t3

t2

1
Figure 5.3: Jacobi coordinates plotted as planes. The red plane is orthogonal to R, the green to
η, and the blue to ζ. One notices how the planes are orthogonal, and how the R-plane, which
is plotted for R = 1/2Rmax is a regular hexagon.

If the three-dimensional data set is considered a cubic matrix of values, specific values of R
corresponds to planes normal to the diagonal from the point (t1, t2, t3) = (0, 0, 0) to (t1, t2, t3) =
(tfinal, tfinal, tfinal).

The relative coordinates η and ζ are orthogonal to R. This is seen by defining unit vectors,

R =
1√
3

1
1
1

 , η =
1√
2

 1
−1
0

 , ζ =
1√
2

1/2

1/2

−1

 . (5.3.2)

It is easily shown that the dot product of each pair of the vectors equal zero, and hence that
they are orthogonal.

The coordinates are illustrated in figure 5.3. In time domain, the coordinates correspond to
a mean time R, the time difference between two of three times η, and difference between the
mean time of two times and the third time ζ. The coordinates are illustrated for photons in
figure 5.4.

In the steady state case, there is no dependence on the center of mass coordinate, as the
center of mass coordinate drops out of the effective potential for three-body interactions [47]. The
experiments performed here do not reach steady state, but this is one of the main motivations
to go to Jacobi coordinates: In jacobi coordinates one has a natural coordinate to average out,
thus reducing four-dimensions to three.

The restrictions on the relative coordinates as a function of R in a cube with 0 ≤ R ≤ Rmax

can be described with

η ∈


[−
√

3/2R;
√

3/2R] if R < 1/3Rmax,

[−
√

1/6Rmax;
√

1/6Rmax] if 1/3Rmax ≤ R < 2/3Rmax,

[−
√

3/2(Rmax −R);
√

3/2(Rmax −R)] if 2/3Rmax ≤ R
(5.3.3)

and for a given set of R and η the restrictions on ζ are given by

ζ ∈


[
√

3|η|−
√

2R;
√

1/2R] if R < 1/3Rmax

[max(−
√

2R+
√

3|η|,−
√

1/2(Rmax −R));

min(
√

2(Rmax −R) −
√

3|η|,
√

1/2R)] if 1/3Rmax ≤ R < 2/3Rmax

[−
√

1/2(Rmax −R);
√

2(Rmax −R)−
√

3|η|] if 2/3Rmax ≤ R

(5.3.4)
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t

1
Figure 5.4: Jacobi coordinates illustrated as time spacing between photons. Here it is assumed
that photon 1 is detected on counter 1 at time t1, photon 2 is detected at counter 2 at t2 and
photon 3 is detected on counter 3, thus determining the value of t3. The grey lines show the
center of mass for the photons. For η, ζ = 0, the three photons arrive at the same time. η = 0
always correspond to photon 1 and 2 arriving simultaneous, while for ζ = 0, the third photon
arrives exactly at the mean time of the arrival of photon 1 and 2. Negative ζ mean that the
third photon arrives before the center of mass of the three photons, while positive ζ mean that
photon 3 arrives after the center of mass.

As seen from the above expressions, η is a hexagon, rising with R to a flat top of value√
1/6Rmax and then dropping again with Rmax −R towards the end. ζ is expressed in terms of

both R and η. Together these maximal values will, for a given R, outline the R-plane within
the cube.

In the expression for ζ, the first term in the maximum and minimum brackets corresponds
to the cut off of triangle tips.

5.3.1 Binning of data points

The shape of the R-planes reflects the placement of the datapoints. This is seen in figure 5.5 a).
The data points for a plane in R lies shifted in η and ζ with respect to the two following planed
so that a point (η, ζ) only occurs in every third R-plane. This gives rise to empty data points,
and in order to exclude those, R is binned in bins of three R-planes. The distance between the
time binns in real time is

√
3 · 0.1 µs.

The binning of R means that η and ζ will lie shifted with respect to each other in a hexagonal
lattice pattern. Translating the hexagonal lattice pattern onto a rectangular grid gives rise to a
checker board pattern with every second bin being empty. Therefore, η and ζ are further binned
to give a pattern without any empty bins.

5.3.2 Averaging over R

As seen in figure 5.2 g(2) is not independent of the corresponding center of mass coordinate√
1/2(t1 +t2). Thus, there is no reason to assume that g(3) is independent of R either. Therefore,

it is to some extend not meaningful to mean over many values of R. On the other hand, without
an averaging over R, the data easily becomes relatively noisy, and the averaging over R can be
justified as long as the theoretical values are averaged in a similar way. To conclude something
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Figure 5.5: Visualization of datapoints in Jacobi coordinates. a) The hexagonal lattice pattern
of coordinates in different R planes which makes binning of R necessary. As seen in the figure,
the blue, orange, and red points have no overlap with each other, but the green points, which
are far in the background, are overlapping with the blue points. When the binning is done, blue,
orange and red points will all be contained in one plane of R, while the green points indicate the
start of a new plane. b) For a range of R, not all planes contribute to the same points. In this
figure, the purple and green semi-triangles have only overlap in the central hexagon. The drawn
square shows how figures are cut so that all points get contributions from the same amount of
R planes.

from the averaged data, it is further assumed that the signal does not change much in the
R-direction on the time scales of the averaging.

Due to the shapes of the R-planes, (η, ζ)-coordinates far from (0, 0) will not be contained
in all planes contributing to the average. This is shown in figure 5.5 a) and b). In figure 5.5a)
the blue points will not be contained in the plane of R which contains the green stars. In figure
5.5 b) it is seen more clearly how four planes of R all have regions not contained in any other
planes. This uniqueness of points is only true in the region where the planes of R are hexagonal.
When averaging it should be taken into account that points for large |η|, |ζ| will have different
number of R-plane contributions than points η, ζ around zero.

To present the data in the most meaningful way, the η- and ζ-axes are therefore limited so
plots only include data where every point (η, ζ) has the same number of contributing R-planes.
This is illustrated in figure 5.5 b), where the outlined square shows the area where all points
have the same number of contributing R-planes.

To find where to cut η and ζ the relations given in equations 5.3.3 and 5.3.4 are exploited.
In this case R for the averaging is chosen to start relatively close to Rmax/3, and the largest R
is around Rmax/2. This means that the smallest area over which the same averaging can be done
is given by the plane for the smallest value of R. A plane for this value of R is then a downward
pointing triangle with cut off tips. The largest square which can possibly fit within this shape
has its side lengths determined by the main triangle. This is illustrated with the dashed square
in figure 5.5b).

Equation 5.3.4 gives the bounds on ζ for a given R and η, which for this triangle is

ζ =
√

3|η|−
√

2R (5.3.5)
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To find the largest allowed side length, the value of η is chosen to be η0 such that for η0 > 0,
ζ(η0) = η0.

η0 = −
(√

3η0 −
√

2R
)

(5.3.6)

=

√
2√

3 + 1
R. (5.3.7)

Further the area plotted is narrowed down such that the first points on the Tukey pulse do not
contribute to the shown part of the figure. These points contribute mainly noise as they have
low signal to noise ratio. This is seen for g(2) in figure 5.2, which has a noisy frame reflecting
the early rise and late decrease of the Tukey pulse.

To produce the figures in the following sections, the average is taken from R = 2.5
√

3µs to
R = 3.5

√
3µs. In realtime this corresponds to a 1 µs interval. The full pulse time is 6.6 µs, but

to avoid including the data from the rise of the pulse, the cut must be made so that the first
part of the rising pulse is not included in the shown η, ζ-range.

Therefore η and ζ are calculated for R = 2.3
√

3µs. For this R-value, η0 = 2.06 µs, and
therefore the figures are cut to the range [−2µs; 2µs] for both η and ζ.

5.4 Third order correlation function

Plots of the measured third order correlation function are shown in figure 5.6a), b) and c). They
all clearly show a six-fold symmetric structure. The structure is expected, as it reflects the
possible permutations of photons on the three counters.

In g(3), the main features are the three crossed photon bunching bands [30]. These three
bands correspond to two photons arriving almost simultaneously on two counters. This structure
is the same as what is seen in the g(2) plots in figure 5.2. The structures are accumulating along
η = 0, and along around ζ = ±η/√3 respectively1. These bands are caused by two photon
correlations [30], and the width of the bands depend on the photon rate. For low photon rates
the main bunching effect is wider, while for higher photon rates the main peak is narrower but
accompanied by higher order peaks further out along the lines. These bands of oscillations are
also visible in figure 5.2, which shows two photon correlations.

The width of the bunching line is determined by the Rabi frequency of the oscillations. As
the Rabi frequency is proportional to the intensity of the incoming field, see equation 2.1.17, a
high incoming photon rate will lead to faster dynamics.

It is further apparent that the two photon lines in g(3) are stronger along the three lines that
span a downward pointing triangle. The same tendency exist for the simulated results, but it is
much less pronounced.

The experimentally measured g(3) can be compared to numerical simulations of the same
system. The simulations are shown in figure 5.6 d), e), and f). The simulations shown are based
on the model introduced in section 2.4. The master equation, equation 2.4.18, is used, assuming
a coherent incoming pulse similar to the one used in the experiment. The simulations shown here
and in the paper are a courtesy of Jan Kumlin, Universität Stuttgart. Similar simulations have
already been shown for g(2) [19], yielding a good agreement between theory and experiments.

Comparing the measured g(3) in figure 5.6, a), b), c) to the simulated results, figure 5.6 d),
e), and f), the same good qualitative agreement which is seen for g(2) [19] is also clear for g(3). It

1This factor follows from the consideration of two photons arriving at the same time. η = 0 represents the
case where t1 = t2, while setting t3 = t2 and t3 = t1 in the expression for ζ yields the factors ±1/3.
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Figure 5.6: The third order correlation function g(3) for different photon rates Rin, experimental
results (a,b,c) and theoretical results (d,e,f). a) and d) are measured results and simulated
results respectively for Rin = 3.4 µs−1, b) and e) are measured results and simulated results for
Rin = 6.7 µs−1 respectively, and c) and f) are the experimental e) and the simulated f) results
for Rin = 15.2 µs−1. The simulated results are a courtesy of Jan Kumlin, Universität Stuttgart.



48 THREE-PHOTON CORRELATION

is worth noticing that close to the central correlation peak, the experimental data do not show
the structure of antibunching along the bunching line as strongly, as the simulations suggest.
This is especially the case for the low photon rate, figure 5.6a), while the experimental data for
higher photon rates, figures 5.6b) and c) have these features more prominently. The bands of
bunching for the experimental plots are also broader than the bands in g(3) from simulations,
especially for low photon rate, as shown in figures 5.6a) and d).

The quantitative agreement the simulated correlations and the measured correlations should
also be noted. The difference in the scale of the effect is relatively large. The range of the
color bars around one is here for the experimental results chosen to be a factor three smaller
than the values for the corresponding simulated data.. Thus for photon rate Rin = 15.3µs−1

the experimentally measured g(3) has a color scale spanning 0.06 units of g(3), whereas the color
scale of the corresponding simulated g(3) is chosen to span 0.18 units.

The discrepancy is assumed to be due to the noise induced by the experimental setup. As
already mentioned, thermal motion of the atoms is a main dephasing mechanism of the system,
and it will cause damping of the outgoing signal. A similar quantitative difference is seen for
the two photon correlation function [19], but to a smaller degree. This qualitative agreement is
however relatively good, as already discussed.

However the results presented in figure 5.6 have a different binning for experimentally mea-
sured g(3) and simulated g(3), which can result in some smearing of peak values for the measured
values.

5.5 Connected correlation function

The order of a correlation function gives the highest order of correlations contributing to the
correlation function. However, lower order correlations will also contribute, and hence g(3)

contains information about two photon correlations on top of information about correlation
between three photons.

The main feature in g(3) is identical to verify features seen in g(2). In order to see that the
signal actually stems from two body correlations with a third random spectator photon, it is
useful to compare g(3) to the sum of g(2) for the three axes, that is∑

i<j

g(2)(ti, tj). (5.5.1)

This sum is illustrated in Jacobi coordinates in figure 5.7. The resulting pattern is clearly almost
identical to the structure seen in the corresponding experimentally measured g(3) in figure 5.6.

This clearly shows that the main component of g(3) stems from two body correlations. As
two body correlations in this system is expected to everywhere be much stronger than the signal
from pure three-body correlations, the latter will be mostly hidden in the g(2) structure of g(3).

To extract the pure three-body correlations, it is therefore necessary to exclude the signal
stemming from pure correlations between two photons. Following the argumentation for figure
5.7, a natural quantity to subtract from g(3) is the sum of g(2). This yields the connected third

order correlation g
(3)
conn. g

(3)
conn is defined as [47]

g(3)
max = 2 + g(3)(t1, t2, t3)−

∑
i<j

g(2)(ti, tj). (5.5.2)

g
(3)
conn will be seen as a measure of the pure three-body correlations. The addition of 2 ensures

that the signal in g
(3)
conn is zero, when no pure three-body correlations contribute. Thus it is
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Figure 5.7: The sum of g(2) for all permutations of three times. The three subfigures show the
sum of the experimentally measured g(2) for different photon rates, Rin. a) for Rin = 3.4 µs−1,
b) for Rin = 6.7 µs−1, and c) for Rin = 15.2 µs−1.

ensured that g
(3)
conn is zero both for a system without any correlations and for systems without

true correlations between three or more components.
The connected correlation function can also be derived in a rigorously mathematical manner

[47] As it will be shown in figure 5.8, signal of the pure three-body correlations are orders of
magnitude smaller than the signal from two body correlations, and therefore the measured g(3)

is qualitatively indistinguishable from the sum of g(2)’s.

5.5.1 Connected third order correlation function

The structure of two photon interaction is clearly visible in figure 5.6, completely obscuring any
structure emerging from higher order effects. Higher order effects are however present, and can

be seen in the connected third order correlation function g
(3)
conn. This is seen in figure 5.8a), b), c),

where g
(3)
conn is plotted for three photon rates for the same values of R as is used for g(3) in figure

5.6. g
(3)
conn has a completely different pattern than g(3). This pattern reflects correlations between

more than two photons. For g
(3)
conn there are no highly expressed band structures reflecting two

photon effects. Instead the three experimental figures for g
(3)
conn all share the same structure

with a narrow peak of bunching in the center, and then rings of antibunching and bunching.
The rings are not fully circular, especially not for higher photon rates, they have the expected
six-fold symmetry. This hexagonal shape is most clearly seen in figure 5.8 c), where bunching-
antibunching oscillation can be followed to at least the third ring of antibunching.

As for the two photon correlations, the results for high photon rate shows stronger oscillations
in the correlations than the results for low photon rate, while the duration of each feature in
the low photon case is much longer than the corresponding duration for higher photon rates.
This is again a feature of damping being greater for low photon while the oscillation frequency
is smaller for this case. For the same reason, the central peak of bunching is much wider for low
photon rates than for high photon rates.

Though the six-fold symmetry predicted by theory is expressed in figure 5.8, it is worth
noting that especially for figure 5.8 d) and e), a triangular bias is visible within the six-fold
symmetric structure. This is caused by the same effect which causes the similar bias in figure
5.6 a), namely the finite size of the pulse which causes the absolute times to contribute different
signals.

The six-fold symmetry is also predicted by the simulated values, which are shown in 5.8 e-f.

Comparing the measured g
(3)
conn with the simulated results yields a less directly similarity than

for g(3). In the theoretical figures of 5.8, the six-fold symmetry of g
(3)
conn is not very pronounced,
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Figure 5.8: Connected third order correlation function g
(3)
conn for different photon rates Rin,

experimental results and theoretical results. a) and d) are measured results and simulated
results respectively for Rin = 3.4 µs−1, b) and e) are measured results and simulated results for
Rin = 6.7 µs−1 respectively, and c) and f) are the experimental c) and the simulated f) results
for Rin = 15.2 µs−1. The simulated results are a courtesy of Jan Kumlin, Universität Stuttgart.
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especially for the low photon rate, figure 5.8a) the shape of the central, uncorrelated area is
quite circular. However, around this circle, a darker star shape is faintly recognizable in the
first ring of correlation. The same star shape is found in the intermediate photon rate shown in
figure 5.8 b).

The less good agreement is caused by a number of factors. The signal in both g(3) and g
(3)
conn is

far smaller than g(2), resulting in a lower signal to noise ratio. This less good agreement between
the theoretical prediction of the pulse shape and the measurements was also observed for the
fits in figure 5.1. This is mainly due to instability of the atomic cloud over long measurements;
the noise introduced by instability in for instance cloud position and atom number reduces the
similarity between the theoretical values and the measured values.

The qualitative agreement of the simulated results with the experimental results is less good

than for g(3), where the range of the color bar had been scaled with a factor three. For g
(3)
conn, this

factor is chosen to be six for the low and intermediate photon rates and to be a factor of five for
the high photon rate case. This difference for three different photon rates is due to the degree
of noise in the data. For the photon rate Rin = 3.4 µs−1, the highest signal is found, but also
the lowest signal to noise ratio. The high signal is due to the relative effect of a single photon
modulation being higher for a small pulse amplitude than for a high pulse amplitude. On the
other hand, the noise is higher due to the lower number of photons detected in each experiment.
As signal to noise scales with photon rate, the low photon rate measurements should in principle
have been extended for much longer.

5.5.2 Reference pulses

The signal in g
(3)
conn is in sharp contrast to the signal from the reference experiments, as seen in

figure 5.9. Since the reference experiments are performed without a medium, no correlations are

expected, neither in g(2) nor g(3) or g
(3)
conn. Figure 5.9 a) and b) show g(2) and g

(3)
conn respectively

for Rin = 3.4 µs−1. The lowest photon rate is chosen for no particular reason. The corresponding
figures for higher photon rates look similar.

Figure 5.9a) shows g(2) being flat around 1. This is exactly what is expected for coherent
laser light, and shows that the laser is very stable over the experiments.

It is worth to notice the colorbar range for the reference g
(3)
conn, which is orders of magnitude

larger than the scale for g
(3)
conn measured with a superatom. This indicates that noise is completely

dominating in the reference pulses. Any structure seen in figure 5.9 b) is due to noise.
Comparing the correlation functions with the empty reference measurements show clearly

that the superatom induces three-photon correlations on an initially uncorrelated pulse.

5.5.3 Center of mass dependency

The data shown in figure 5.8 is plotted for planes of R. Other ways of presenting the results can

also be considered. Figure 5.10 shows a) the η plane of g
(3)
conn when ζ = 0 and b) the ζ plane of

g
(3)
conn for η = 0, both as a function of R for Rin = 15.2 µs−1.

The two plots in figure 5.10 both show the same structure, namely a line of antibunching
parallel to R accompanied by lines of bunching. In the very center for η, ζ = 0 respectively, a
faint line of equal time bunching is seen.

The edges of the figures are noisy due to the low signal to noise contributions from times on
the rising and falling part of the Tukey pulse.

For η as a function of R when ζ = 0 the resulting shape is a square diamond. This correspond
to a slice along the diagonal of the datacube as shown in figure 5.3. This also becomes clear by
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Figure 5.9: Reference pulses for Rin = 3.4 µs−1. a) g(2) shows no correlations. b) g
(3)
conn does not

contain any information either.

setting ζ = 0 in equation 5.3.4.
The plot for ζ is a rectangle standing on one point. Until R = Rmax/3, the lower bound on ζ

goes as −
√

2R, while the upper bound is rising with
√

1/2R. For Rmax/3 ≤ R ≤ 2Rmax/3, both
upper and lower bound goes as

√
1/2R, and after that, the upper bound goes as −

√
2R, while

the lower bound continues to increase as
√

1/2R. These three regimes correspond exactly to the
slices of R being either an upside down triangle, a hexagon or a triangle.

The width of the line of antibunching depends on R, and the strength of the correlations
around the line is seen to oscillate as a function of R, indicating that the system is not in steady
state. Especially in figure 5.10 b), oscillations in the signal strength along R show up.

The width of both the faint peak at η, ζ = 0 and the surrounding antibunching feature is
also seen in figure 5.8. On this figure, the central peak for low photon rate is wider than for
high photon rate, and the same will be seen in figure 5.10 if this is plotted for all three photon
rates used here. The figures for lower photon rates are not shown here, as they are noisier.

That figure 5.10a) and b) are more noisy than figure 5.8c) is explained by figure 5.10 not
being averaged over R. Noting the colorbar scale on these figures, it is seen that averaging will
not only reduce noise, it will also wash out the contrast. Considering the hexagonal rings in
figure 5.8 it is clear that any averaging over values of ζ and η in figures 5.10a) and b) respectively
will smear the structure and can only be done for intervals of ζ and η respectively much smaller
than the smallest ring feature.

In figure 5.10, it is seen that that g
(3)
conn is not independent of the center of mass coordinate.

This would be true only for a steady state case. In a), the signal for the first strip of antibunching
and bunching around η = 0 oscillates with R.

The same is true for 5.10b), but whereas the oscillations are mirrored across η = 0, the
oscillations in g(3) are shifted in R for values of ζ smaller and larger than ζ = 0. This is a finite
size effect, and for an infinite pulse this would not be the case.

The oscillation shift is due to the way the three times enter in ζ. Values of ζ > 0 corresponds
to the mean of t1 and t2 being greater than t3, as shown in figure 5.4. Thus, for ζ along η = 0,
which corresponds to t1 = t2, the positive part of ζ will be delayed compared to the negative

part. The shift of oscillations is a result of the same effect which causes g(3) and g
(3)
conn to have

a triangular bias in the six-fold symmetric structure.
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Figure 5.10: Cuts of η and ζ of g
(3)
conn as a function of R for photon rate Rin = 15.2 µs−1. a) η

as a function of R for ζ = 0. b) ζ as a function of R for η = 0.

The time dependency of g
(3)
conn seen in figure 5.10 suggest to reconsider the averaging over R.

The averaging is done under the assumption that the variation as a function of R is relatively
small on the time scale of the R-range, but even small variations will smear any substructure.

To investigate the actual dependency of the signal on R, single planes of R are shown in
figures 5.11 and 5.12. In figure 5.11, three planes of R are plotted. These are for R = 2.5

√
3µs,

R = 3.0
√

3µs and R = 3.5
√

3µs. These values are chosen as they are the first, the half-way and
the last value of the R-range contributing to figures 5.6 and 5.8.

As seen in figure 5.11, the structure of g
(3)
co\\ depends on R. Figure 5.11 a) shows a flower-like

structure with a slight triangular bias pointing up. Figure 5.11 b) shows a very perfect regular
hexagon with a relatively sharp first ring of antibunching. Figure 5.11 c) shows again the shape
of a flower with six petals. In contrast to figure 5.11a) and b) figure 5.11 c) does not show a
central peak, its center shows only antibunching.

The color scale of figure 5.11 differs from the color scale of figure 5.8 c), as averaging washes
out the contrast in figure 5.8.

From figure 5.11 the problem of averaging over R is clearly seen, as every slice of R through

g
(3)
conn contains unique information about the time evolution of the outgoing field.

In figure 5.11 the signal to noise ratio is good enough to see the features of g
(3)
conn. Considering

the low photon rate case, as shown in figure 5.12, the signal to noise gets far worse. Figure

5.12 shows g
(3)
conn for the same planes of R as is shown in figure 5.11, namely R = 2.5

√
3µs,

R = 3.0
√

3µs and R = 2.5
√

3µs.
In figure 5.12, the three different planes are also different, but the three figures are much

more noisy. Figure 5.12a) has a triangular shape of antibunching. There is a peak in the center.
For higher R, figure 5.12b) shows less triangular bias, and the central peak has vanished more
or less. Figure 5.12c) has a more circular center than what was the case for the earlier values
of R, and the structure around η, ζ = 0 suggests that there might be some substructure within
the central antibunching feature, but this information cannot be distinguished from the noise.

Thus to get a reasonable signal in the low photon rate case, some averaging over R is
necessary, but it is clear that information is lost when averaging.

For the practical purpose of showing the signature of pure three-photon correlations averaging



54 THREE-PHOTON CORRELATION

−2 0 2
η (µs)

−2

−1

0

1

2

ζ
(µ

s)

(a)

−1.70

0.00

1.53
×10−3

−2 0 2
η (µs)

−2

−1

0

1

2

ζ
(µ

s)

(b)

−1.70

0.00

1.53
×10−3

−2 0 2
η (µs)

−2

−1

0

1

2

ζ
(µ

s)

(c)

−1.70

0.00

1.53
×10−3

Figure 5.11: g
(3)
conn for single planes of R for photon rate Rin = 15.2 µs−1. The subfigures shown

here correspond to R = 2.5
√

3µs, R = 3.0
√

3µs, and R = 3.5
√

3µs. It can be seen that the region
changes for the different values of R. This shows how averaging over a range of R-values will
cause some information to be lost. On the other hand the averaging over a range of R reduces
the signal to noise substantially. This is especially important in the low photon rate, where the
signal is the weakest.
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Figure 5.12: g
(3)
conn for single planes of R for photon rate Rin = 3.4 µs−1. Here the subfigures

correspond to R = 2.5
√

3µs, R = 3.0
√

3µs, and R = 3.5
√

3µs. The central area of g
(3)
conn varies

for different values of R. Here for a low photon rate the noise is however obscuring much of the
information.

over R is still valid. For comparison with the theory, averaging over R is also reasonable as long
as the same averaging is done for the calculated results. On the point of calculated results,
comparison of these specific planes of R to the corresponding theoretical values would be a
strong way of testing the validity of the model.

5.5.4 The origin of three-photon correlations

The model described in section 2.4 predicts not only two body correlations but also three-
body correlations. For the simple physical picture of the two-level system, shown in figure 2.1,
two photon correlations can be readily understood as a rearrangement of the photons in the
photon stream. The probability to reemit an absorbed photon is greater when a second photon
is present to cause stimulated emission. Thus, two photons can readily be bunched just by
stimulated emission.

In this very simple picture, it is harder to see how the three-photon correlation arises. This
can be imagined by considering how the photon emission and absorption probability changes
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when many and few photons are present.
A single photon absorbed will have a higher probability to be reemitted if two photons are

already present than if one is present, and along the same lines, three photons arriving at the
atom will increase the probability of an absorption.

Following this argumentation, the probability of absorption increases with the photon rate.
Thus it would be expected that for higher photon rates, correlations of order higher than three
should arise as well.

The equations presented in section 2.4 can be solved analytically for a simplified system [38].
This analytic solution yields insight into the microscopic origin of the three-body correlations
observed in the experiment. Here these theoretical results will only be treated briefly. The
rigorous mathematical solution shows that the eigenstates of the solution are scattering states,
two photon bound states with a third scattering photon and three-body bound states. The three-
photon bound state naturally contributes to the connected third order correlation function.

Considering the wavefunction as function of three photon separation times the theory predicts
the main contribution for equal times to stem from the three-body bound state, being four times
larger than the contribution from pure scattering states and states with two bound photons and
a third scattering state. The contribution to the wavefunction however decay faster than the
other contributions.

So far the model has been solved for three photons ref to paper. For higher numbers of pho-
tons higher order bound states and thus higher order correlations are also assumed to contribute
in a similar way as the three-body bound states, but as for the three-photon bound state, their
contributions are assumed to decay even faster than the contribution from three-photon bound
states.
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Chapter 6

Multiple superatoms

While a single superatom was used to measure correlations between three photons, the setup
described in section 4 has the versatility to introduce multiple dimple traps.

In this chapter we first introduce the advantage of multiple superatoms. In section 6.2,
initial results for two superatoms are presented. The exploration of two superatoms yields very
promising results for future experiments. With ion statistics show that we are approaching
the case where one ion is always produced in each atomic ensemble, which would be a clear
indication of two superatoms [12]. Further we study of the time traces of the ion measurements.
These time traces show that due to the spatial separation of the two atomic ensembles, the ions
from the different superatoms arrive at different times at the detector. Thus, from the ion time
trace we can with high fidelity determine whether a Rydberg excitation was created in each cite.

However as described in section 4.2, the configuration of multiple dimple traps is very sensi-
tive to alignment. These initial measurements are far from perfect but offer a promising outlook.
Due to other experiments and lab renovation the two superatoms have so far not been pursued
further than described here.

6.1 Multiple superatoms

As observed, a single superatom is close to unidirectional, due to the enhanced coupling to the
forward mode of the probe light. This high probability of emission back into the system mode
can be exploited for cascaded quantum systems [21].

The simplest system is a pair of emitters in series. In this case, a relevant system would be
two superatoms separated by a distance much larger than the blockade radius. An incoming
coherent light pulse will be modulated by the first superatom and then interact with the second
superatom. Due to the separation, and the directional emission from both superatoms, it can be
assumed that there will be only little or no backaction from the second superatom to the first.

Returning to the three fundamental processes; absorption, stimulated emission and sponta-
neous emission, shown in figure 2.1 in chapter 2, some initial proposals for the dynamics of two
perfectly unidirectional two-level systems in series probed with resonant light can be given.

Consider an incoming photon pulse. The first two-level system would absorb a photon
from the photon field and return it through stimulated emission, thereby bunching two photons
together [30]. The second two-level system would receive this pulse of bunched photons and
absorb one, thereby undoing the bunching.

From this argument, it could be considered whether the two-level systems in series will undo
any correlations. This picture fails when considering a bunched pair arriving at the second
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(a) (c)(b)

1
Figure 6.1: Illustrations of how investigations of two superatoms is done with each of the super-
atoms created independently as reference. The yellow spots illustrate the trapped superatom.
The dashed outlines show where a second trap would be positioned if two traps were used. a)
Only a single dimple trapping beam is on, and thus only one atomic ensemble is created in the
first, rightmost position. b) Still only one dimple trap, but with a different position than for a).
c) Two traps are created, realizing two superatoms in series.

two-level system, when this is already in the excited state. The two incoming photons will cause
the emission of a third photon which will be bunched with the two already bunched photons.

Considering that three-photon correlations mediated by a single superatom have been shown
experimentally in this thesis and the paper, multiple two-level systems can be expected to offer
a light modulating dynamic beyond two photon correlations.

The signal of three-photon correlations, given by the connected third order correlation func-

tion g
(3)
conn, is two orders of magnitude smaller than the second order correlation function g(2).

The naive assumption is that the correlation effects of introducing a second superatom after
the first would also be higher order effects and cause modulations on the same qualitative level
as the three-photon correlations. Whether these correlations are of sufficient intensity to be
measured can be considered an open question, but since three-photon correlations are visible
from the noise in the experiments presented here, it is expected that measurements of the two
superatom modulations are possible.

It is however not clear so far what actually to expect of two superatoms in series, as also the
theory does not give any clear predictions yet and as the experimental investigation of multiple
superatoms have been brought to a halt due to construction work in the laboratory.

To investigate the correlations introduced by having two superatoms in series rather than
a single superatom, correlations in the outgoing field should be measured for each superatom
individually and then for the system of two simultaneous superatoms. Subtraction of the cor-
relations introduced by one is expected to reveal the effect of introducing a second superatom.
These three situations are illustrated in figure 6.1.

The setup is not limited to the superatom regime where the single photon detuning is large.
As three-level systems, the two atomic ensembles offer a variety of parameters to tune, such as
detunings from EIT resonance and internal dephasing parameters, allowing a number of possible
investigations.

In the setup described here, the superatoms are created along the probe, in series. It is most
common to investigate Rydberg interactions between separated atomic ensembles with the clouds
in parallel. These setups offer the possibility to probe two atomic ensembles simultaneously and
observe how they interact, as well as the option to probe the ensembles individually, thereby
introducing a phase difference in the probe light exciting each atom [29, 48].
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(a) 200 m (b) 125 m

Figure 6.2: Two filled dimple traps as seen from the two imaging directions, a) is from above,
averaged over 6 images. b) is from the imaging along the dimple traps, averaged over 6 images.

6.2 Initial results

The initial measurements on two superatoms presented here were performed on two atomic
ensembles relatively similar to the single one presented in section 4.3. In chapter 4, several
figures show multiple dimple traps. In figure 6.2, two atomic clouds in dimple traps are shown.
Figure 6.2 a) shows the atomic clouds imaged from top for a time of flight measurement. From
top imaging is defined as shown in figure 4.2. Figure 6.2 a) shows the dimple traps during
alignment. The dimple beams are more visible towards the bottom of the image than towards
the top, due to the dimple focus not being perfectly overlapped with the optical dipole trap.
Due to this, some atoms are also seen in between the dimple traps, remaining in the dipole trap.
It is further seen that the dimple beams come with a bit of an angle relative to the axes of the
camera.

Figure 6.2 b) shows two filled dimple traps as seen with imaging along the dimple beams,
as described in figure 4.2. The rotation with respect to the dipole trap discussed in chapter 4 is
seen in figure 6.2, and can be compared to figure 4.7.

6.2.1 Ion detection and two photon absorption

The experimental setup includes a multi-channel plate (MCP) to detect ions. multiple electrodes
are used to field-ionize the superatom and guide the resulting ion to the MCP. The field ionization
pulse is applied after every experiment, to get rid of any remaining excitations.

The field ionization pulse addresses only atoms with a principal quantum number n higher
than some lower limit such that only atoms excited to Rydberg states are addressed. Therefore,
a true superatom can only produce a single ion, since it can only host a single excitation and only
one atom can be ionized [12, 39]. With this in mind the ion counts can be used to determine the
Rydberg population, and whether a true superatom is created. To investigate this, the number
of ions is plotted as a function of photon rate, as shown in figure 6.3 a). The three lines in
figure 6.3 a) represent two atomic ensembles (blue line), and each of the two ensembles on their
own (orange and yellow lines). The green line shows the sum of the detected ions for the two
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Figure 6.3: Incoming photons. a) Ions detected as a function of probe photon rate. Blue line
is for two simultaneous superatoms, orange and yellow lines are for individual superatoms. The
dashed green line shows the sum of ions from the two individually created atomic ensembles.
The sum of ions from the two individual atomic ensembles should in the ideal case equal the
number of ions created in two atomic ensembles created together. The lower number of ions
created for two atomic ensembles is discussed in the text. b) Outgoing photon rate as a function
of incoming photon rate. The blue line is for two superatoms while the orange and yellow lines
corresponds to the individual superatoms. The green line shows the signal with no medium
present.

individual superatoms. The green line should in principle coincide perfectly with the blue line,
but here we observe that the total sum of ions from the individual atomic ensembles is different
from the number of ions produced in the two simultaneously trapped atomic ensembles.

To understand the reduced ion count observed, we consider how two atomic ensembles are
created. The ensembles are created by overlapping a dimple trap with the optical dipole trap.
Atoms from the dipole trap will then fill the dimple trap, and the dipole trap will be turned
briefly off to empty it of atoms outside of the dimple trap.

When loading two dimple traps from the dipole trap, there is the risk that the dipole trap
does not contain enough atoms to fill two dimple traps with the same number of atoms as they
would contain if only one had been created. This difference in atomic density will affect the
absorption and hence the probability of exciting each superatom becomes a bit different if they
are generated simultaneously or as a single superatom.

This is an important point to stress when considering the measurements proposed in section
6.1. To do meaningful measurements it is necessary to have dimple traps that are identical
whether they are created alone or in multiples. If this condition is not practical, it is necessary
to characterize this unavoidable difference.

It is shown in figure 6.3 a) that the number of detected ions does not increase linearly with
the increasing photon rate. This is expected as the superatoms should only host one ion each.
In principle the value should saturate, but in figure 6.3 a) the number of detected ions does not
stop increasing for the chosen photon rates. This indicates that that the intensity in the light is
not high enough to reach the saturation value, where an ion is created in every pulse. It can also
indicate that the atomic ensembles created here are not fully blockaded. Additional ions can
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in principle come from some atoms remaining outside the dimple traps in a shallow dip caused
by the dipole trap between the two dimple traps. This is briefly discussed in chapter 4, and to
avoid this effect, the dipole trap intensity is ramped fully off before the probing to allow atoms
outside of the dimples to evaporate.

Noting that the photon rate is not as high as for the measurements of three-photon cor-
relations presented in chapter ??, it is clear that these measurements were performed with a
relatively conservative highest photon rate. As these are initial measurements, future measure-
ments will go to higher photon rates.

Figure 6.3 b) shows the outgoing photon rate as a function of incoming photon rate. In
this figure it is seen that the two individual atomic ensembles each absorbs the same amount of
photons, and half as much as two atomic ensembles together.

6.2.2 Ion statistics

The ion measurements shown in figure 6.3 do not reach saturation, but some initial statistics
can still be performed on them to help determine whether true superatoms are realized. A
true superatom deterministically produces one and only one ion. To investigate whether this is
the case, or whether the ions follow a Poisson distribution, it is useful to look at the Mandel
Q-parameter [49]. Q is a measure for the deviation from Poissonian statistics.

For a stochastic variable x, Q is defined as

Q =
var(x)

〈x〉 − 1 =
〈x2〉 − 〈x〉
〈x〉 − 1. (6.2.1)

Where var(x) is the variance of x and 〈x〉 is the mean value of x. If x is drawn from a Poisson
distribution, Q will be zero, as variance of x will equal the mean value. Therefore super/sub Po

Considering n ideal superatoms, the creation of ions can be described by n independent, not
necessarily identical, Bernoulli trials. The trials are not necessarily identical, as the absorption in
two superatoms might be different, and as detection efficiency may vary for ions from superatoms
with different spatial positions. Such a system will follow a Poisson binomial distribution. With
x as the number of successes, the mean of such a distribution is given by the sum of probabilities
for success, while the variance is given by [50]

var(x) =

n∑
i=1

(1− pi)pi, (6.2.2)

where pi is the probability of success in the i’th trial. For a given mean value of the n trials, the
variance on the number of successes will increase as the probabilities become more homogeneous
and attend the maximum value when they are identical [50]. For n independent, not necessarily
identical, Bernoulli trials, Q is

Q =

∑n
i=1(1− pi)pi∑n

i=1 pi
− 1 = −

∑n
i=1 p

2
i∑n

i=1 pi
. (6.2.3)

If the probabilities are identical, pi = P , it follows that Q = −P .
If two trials are performed, and they have different success probabilities, pa, pb, Q is expected

to be

Q =
(1− pa)pa + (1− pb)pb

pa + pb
− 1 = −p

2
a + p2

b

pa + pb
. (6.2.4)
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Figure 6.4: Mandel Q-parameter for the data shown in figure 6.3. a) shows the ion trace (solid
line), and −Q, (dashed line) for the two simultaneously trapped atomic ensembles. −Q does
not correspond to half of the measured ions. b) Detected ions for a single atomic ensemble for
two different positions (red and yellow solid lines). Dashed lines: connecting diamond points
give the corresponding −Q. Again, −Q is too low compared to the number of detected ions..
c) Blue line is −Q/〈nions〉 for the system of two trapped atomic ensembles. The grey line at
1/2 shows the expected −Q/〈nions〉 for two identical, perfect superatoms. d) Orange and yellow
lines: −Q/〈nions〉 for the two independent single atomic ensembles shown in b). The grey line
at 1 shows the expected −Q/〈nions〉 for two identical, perfect superatoms.

Clearly Q will be furthest from zero when pa = pb.
Q over the distribution mean is another another measure for the deviation from Poissonian

statistics. Dividing Q by the mean for the distribution will for n independent, identical Bernoulli
trials be −1/n. For two superatoms with approximately the same detection efficiency, we would
thus expect

Q

〈x〉 = −1

2
(6.2.5)

In the case where the probabilities are identical, the Q-parameter over the mean will be minus
one over the number of trials, that is −1 for a single trial, −1/2 for two trials and so on. As seen
in equation 6.2.4, −1/2 is the smallest achievable value, and is only true if the probabilities for
success in the two trials are identical.

Plotting Q for the data given in figure 6.3 a) yields figure 6.4. Figure 6.4 a) shows −Q
and −Q/〈x〉 for two superatoms. In figure 6.4 a), it is worth noticing that the dashed line
representing −Q is relatively far from half the number of detected ions, shown with the blue
points. −Q is instead relatively close to zero, the value Q takes for a Poissonian distribution.
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This deviation can, to some extent, be explained by the same argument as why the number
of detected ions for two superatoms does not correspond well to the sum of the ions detected
for the two individual superatoms. The two superatoms generated simultaneously for these
measurements are not independent in the sense that they are different from superatoms created
one by one at the same positions. That the two superatoms have different detection efficiencies
can be seen in figure 6.3 a), and this should indeed result in a lower value of the Mandel Q-
parameter for the two superatoms, as the variance will be smaller for non-indentical probabilities
[50].

For the individual superatoms, shown in figure 6.4 b), −Q is closer to the number of detected
ions. If the system was fully blocked by a single excitation, −Q would have been expected to
correspond exactly to the measured number of ions. Here however, −Q is lower, again indicating
that the individual superatoms does not deterministically produce a single ion. As discussed
about figure 6.3 the maximal photon rate chosen is not close to the maximal photon rate used
for the three-photon correlation measurements shown in chapter ??. For the photon rates used
here, we are not fully saturating the superatoms, and this will of course mean that the number
of trials where no ion is created will change the statistics.

Figures 6.4 c) and d) show −Q/〈x〉. If two ideal superatoms had been created, we would
have expected the value in figure 6.4 c) to be centered around 1/2. It is however centered
around approximately 1/4. A value lower than 1/2 is to some extent expected, as equation
6.2.4 will have minimum when the probabilities are equal, and as seen in figure 6.3 a) the two
individual superatoms do not have the same detection efficiency. Studying figure 6.4 b), it is
clear that for the two independent superatoms, Q over mean is not the expected −1 as expected
for a Bernoulli trial, but slightly lower. A lower value indivates of −Q/〈x〉 indicates that the
superatoms are not fully blockaded. For experimentally realized superatoms, some effect of
second photon absorptions are expected to increase Q/〈x〉 [12, 39], however only at photon rates
higher than what is used here. Therefore, the graphs shown in figure 6.4 c) and d) indicates
that some atoms outside of the superatoms contributes ions to the staticstics, thereby yielding
a system where the ion creation probability is closer to a Poissonian distribution than preferred.

6.2.3 Ion time traces

The results shown in figures 6.3 and 6.4 are the mean number of ions detected over an experiment
and the mean photon rate over a pulse. Looking at the time traces yields further information
about the system.

Figure 6.5 shows the mean time trace of probing experiments at constant photon rate.
The signal is detected ions. The blue line shows the signal from two simultaneously created
superatoms, while the yellow and red lines shows the ion trace for the individual superstoms
respectively. The colors correspond to the colors in figure 6.3 and figure 6.4.

On figure 6.5 it is seen that the time it takes for the ions to reach the detector depends
on the position where the ion is created, and thus the position of the superatom. In the case
where more than one superatom is investigated, the ion signal from the different superatoms
can be distinguished. Thus the red and yellow lines in figure 6.5 show the ion traces of a
single superatom generated in two different positions. The blue line shows the time trace for
two simultaneous superatoms. The blue line shows two main peaks with a temporal separation
of 0.02 µs. This temporal spacing can, to some degree, be adjusted by adjusting the steering
voltage.

The three subpeaks in each ion peak is caused by the screening wires in front of the MCP
[42, 40]
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Figure 6.5: Ion time trace from two individually produced atomic ensembles and from two
simultaneously created atomic ensembles. The blue line indicates the ion trace from two simul-
taneously created atomic ensembles. The red and yellow lines show the time trace of detected
ions from each of the two atomic ensembles individually created. The lines are averaged over
the ion counts from around 50 times 1000 experiments.

The observation that the ion trace from each superatom have a different arrival time allows
post processing of data, as one can use the observation of whether ions arrives within both time
windows or not as a measure for when two superatoms were excited. Hence for the data analysis
it is possible to exclude experiments where this does not happen, and also to study the case
where only one superatom is excited.

The distinguishable ion traces can, for instance, give an indication of whether two superatoms
are equally likely to be excited for low photon numbers, or whether the probability of excitation
depends on the presence of another superatom. This could, for instance, be the case if the first
superatom pulse modulation makes the pulse more likely to interact with the second superatom.

6.2.4 Outlook for two superatoms

The initial results presented in the previous sections, sections 6.2.1, 6.2.2, and 6.2.3 clearly show
that the two superatoms we have been studying are not yet ideal superatoms. It is also clear
from figure 6.3 a) and figure 6.4 that the system of two superatoms generated simultaneously is
not the sum of its components if these are studied individually, probably due to a fundamental
difference between generating one and two superatoms. When two superatoms are generated
simultaneously, they both fill depending on the atomic density in the optical dipole trap. This
filling is not necessarily uniform for the two dimples, as it will depend on how well they are
overlapped with the dipole trap. If only one dimple beam is used, the atomic trap does not have
to ’share’ atoms with another trap. Thus, it is possible that the two simultaneous superatoms
have different atomic densities than their single counterparts due to the loading process.

Another source for deviation is the AOD intensity distribution, which seems to depend on
the number of applied frequencies. This is briefly mentioned in section 4.1.3. Compared to the
realization of a single superatom, two superatoms are harder to align, as also discussed briefly
in chapter 5. The two superatoms should ideally have the same number of atoms interacting
with the probe light so that the Rabi frequency for the two are the same. To realize this, the
two superatoms must ideally be aligned similarly onto the dipole trap to give them identical
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atom numbers and they must be overlapped identically with the probe. Ideally, the focus of the
probe should be exactly in between the two dimple traps.

To ease the alignment of two superatoms, a number of steps can be taken in the future,
for instance introduction of a horizontal telescope to enlarge the dimple traps perpendicular to
the probes, such that they are less sensitive to alignment onto the dipole trap. It is further an
option to add yet another trapping beam, along the probe beam. With such a trap, it will be
possible to create two dimples further apart, and thus have them less prone to steal atoms from
each other.

It thus is clear from the inital results presented here, that while a system of two or more
superatoms offers a variety of exciting experiments, the implementation is delicate.
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Chapter 7

Conclusion

In this thesis, measurements of correlations between three photons mediated by a single Rydberg
superatom are presented, and initial results for a cascaded quantum system consisting of two
Rydberg superatoms are discussed.

To realize a Rydberg superatom, our existing experimental setup has been extended to
include an additional optical trap. Such an additional optical trapping setup has been tested
and implemented during the scope of the thesis. The trap setup make use of an AOD, which
allows us to have multiple dimple traps, and thereby create multiple superatoms at the same
time.

With this new experimental capability, our first scientific use was to investigate three-photon
correlations mediated by a single superatom. In particular, we managed to observe a clear sig-
nature in the connected part of g3 even after subtraction of g2. These correlation measurements
are in good qualitative agreement with the results predicted by theory.

Furthermore, comparison to an idealized analytical model suggests that the three-photon
correlation stems from three body bound states in the photon wavefunction.

These results have led to a joint publication with theory partners from Universitẗ Stuttgart.
The experimental trapping setup with the AOD is not limited to the realization of a single

superatom. In the current setup, four radio frequency fields can be applied to the AOD, which
in principle allows the realization of four highly confined atomic ensembles in series.

In the scope of this thesis, a setup of two Rydberg superatoms has been investigated, and
the initial results are presented here. The ion statistics presented here indicate that with the
current alignment the two superatoms are not yet fully blockaded. Furthermore, the initial
measurements on two superatoms in series have yielded slightly different results for two atomic
ensembles created simultaneously and for each of the components created alone. This observation
indicates that our two traps are created in such a way that they compete for some atoms, leading
to lower densities in the two serial traps than the densities in the individually created traps.
The difference may also be caused by deviations in the AOD intensity distribution as a function
of the number of applied rf-fields. However, in the view of the early stage of the investigations,
the results for two superatoms look promising for future experiments.

One particular result from our first investigations is that in our ion-detection setup, ions
resulting from the two superatoms can be time-resolved on our single MCP. This permits us to
measure the Rydberg population of each ensemble independently, which will provide additional
information for two (or possibly more) superatoms. One possible future use is in post-processing
of data, because we can select for data where light has interacted with both ensembles
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7.1 Outlook

The results presented in chapter 6 for two trapped atomic ensembles show that further work is
necessary to realize two fully blockaded ensembles acting as Rydberg superatoms, and to have
the ensembles behave identically whether they are created together or one by one. To improve
the performance of the two atomic ensembles, a number of experimental steps can be taken.
One of them is the planned introduction of yet another trapping beam, this one along the probe
direction. With such a trap, two dimple traps can be generated further apart than is possible
now, and then be ramped to the position of interest. In this way, the possibility of the two
dimple traps stealing atoms from each other would be ruled out.

To counter the problem of the intensity in a beam from the AOD depending on the number
of applied rf-fields, an aperture could be introduced in the beam path, allowing us to always
operate the AOD with two applied fields. When only one dimple is of interest, we would be able
to deflect the other beam with a large angle and clip it on the aperture.

Considering the three-photon correlations, further investigation could be done if phase mea-
surement of phase was possible in the experiment. Therefore, we will implementation of a phase
measurement setup in the existing setup. With phase measurement, the full wavefunction of
the photons can be determined, and we are not limited to probe only the probability of states.
The phase measuring setup would also give valuable information about the interactions of two
superatoms with light.
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[3] Darrick E. Chang, Vladan Vuletić, and Mikhail D. Lukin. Quantum nonlinear optics — photon by
photon. Nature Photonics, 8(9):685–694, sep 2014.

[4] O Firstenberg, C S Adams, and S Hofferberth. Nonlinear quantum optics mediated by Rydberg
interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(15):152003, aug
2016.

[5] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller. Dipole
Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles. Physical Review
Letters, 87(3):037901, jun 2001.

[6] Shuai Chen, Yu-Ao Chen, Thorsten Strassel, Zhen-Sheng Yuan, Bo Zhao, Jörg Schmiedmayer, and
Jian-Wei Pan. Deterministic and Storable Single-Photon Source Based on a Quantum Memory.
Physical Review Letters, 97(17):173004, oct 2006.

[7] Y O Dudin and A Kuzmich. Strongly interacting Rydberg excitations of a cold atomic gas. Science
(New York, N.Y.), 336(6083):887–9, may 2012.

[8] Thibault Peyronel, Ofer Firstenberg, Qi Yu Liang, Sebastian Hofferberth, Alexey V. Gorshkov,
Thomas Pohl, Mikhail D. Lukin, and Vladan Vuletić. Quantum nonlinear optics with single photons
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Rydberg Slow-Light Polaritons. Physical Review Letters, 117(5):1–5, 2016.

[48] Hannes Busche, Paul Huillery, Simon W. Ball, Teodora Ilieva, Matthew P. A. Jones, and Charles S.
Adams. Contactless nonlinear optics mediated by long-range Rydberg interactions. Nature Physics,
13(7):655–658, 2017.

[49] L. Mandel. Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett., 4(7):205–207, Jul
1979.

[50] Y. H. Wang. On the number of successes in independent trials. Statistica Sinica, 3(2):295–312, 1993.





BIBLIOGRAPHY 73

Acknowledgment

It should be no secret, that my acknowledgement could easily take up as much space as the
rest of this thesis, since so many people should be thanked for contributing to this work or for
making every day special. In particular I would like to mention

• Sebastian Hofferberth for excellent guidance and supervision, and for the opportunity to
work on this incredibly cool project as the first Danish master student. I could not be
happier that you choose to relocate to here, you have brought so many good things!

• The group members, current and former: Asaf Paris-Mandoki, Christoph Braun, Christoph
Tresp, Florian Christaller, Philipp Lunt, Simon W. Ball, and Tom Asmussen for good
company, sheepish humour, and interesting discussions. Every day that I have spent with
you guys I have learned something new.

• Christoph Tresp, not only for all the fun times and for teaching me so much, but also for
being someone to look up to; I can happily say I learned from the best. I hope that you
will only work with super stable experiments that are completely free of dust.

• Philipp Lunt who a always bring a spark of humor and insight to my day. I so admire how
you always courageously challenge yourself, both regarding science, puzzles, and jumping
into the icy waters of the harbor bath.

• Simon Ball for providing a great deal of my daily dose of dry humor and for proof reading
this work. It would have turned out much worse if it was not for you!

• Jan Kumlin, Kevin Kleinbeck and Hans Peter Büchler for excellent collaboration. It is
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