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Summary
Deutsch

Im Rahmen dieser Bachelorarbeit wurde ein Aufbau zur Messung eines Phasenschubes
auf Einzelphotonenbasis realisiert. Dazu wurde ein optisches Interferometer mit einem
elektrooptischen Modulator zur Verschiebung der Signalphase aufgebaut. Dabei konnte
ein Phasenschub von 1.4 π erreicht werden.
Einerseits wurde ein als klassisches Licht anzusehendes Signal, andererseits ein Einzelpho-
tonensignal (Leistung:1 · 10−9W) gemessen. Diese wurden mit einer Wechselstromphoto-
diode (klassisch) und einem Einzel-Photonen-Zähler-Modul (quantisiert) detektiert.
In dieser Bachelorarbeit wird zunächst der notwendige Aufbau mit den verwendeten
Geräten besprochen. Gefolgt von einer theoretischen Betrachtung der unterschiedlichen
Lichttheorien und deren experimentelle Umsetzung und deren Messergebnissen. Dabei
konnte erfolgreich der Phasenschub des Einzelphotonensignal bestimmt werden, sodass
das Setup zur Messung eines Phasenschub durch eine Rydbergblockade genutzt werden
kann.

English

During this bachelor thesis a setup for a phase shift determination, which is applicable
down to a single-photon level were realised. The phase shift on a ligth field, normally
imprinted by an atomic blockade, is simulated through a electro-optical modulator. The
setup can produce a phase shift of up to 1.4π.
On the one hand a high intensity signal, which obeys the classical theory of light and on
the other hand a signal on a single-photon level was measured. Therefore, an alternative
current photodiode to measure the classical signal and a single photon counter module
to measure the single-photon signal was used. To confirm the correctness of the different
measurement methods they were compared with each other.
This bachelor thesis reviews the required devices and discusses the implementation of the
setup. It is followed by a theoretical consideration of the different light theories and there
experimental implementations. Moreover, the results of the measurements are analysed
and reviewed in detail.
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1 Introduction
In the next ten years computers with standard data transfer via electric impulses are
going to reach a performance limit. Those computers are constructed with dissipative
logic gates with two states: zero or none. Nonetheless, it is not necessary to realize
the logical primitives of a computer with dissipative elements[1]. Through the advent
of quantum information processing (QIP) the states are not limited to solely zeros and
ones. This could speed up the performance of computers exponentially[2]. To this purpose
photons are interesting as carries of quantum information, which can be transmitted easily
over long distances, because they hardly interact with their environment. As the central
building block of a universal QIP a deterministic photon-photon gate could be used. This
would be possible if a single photon light pulse imprints a π phase shift onto a target light
pulse [1]. However, because optical photons do not directly interact with each other this
leads to difficulties, which could be re-solved by interfacing photons in a medium with an
extremely high nonlinearity while preserving optical coherence. A physical mechanism,
which can reach such a high nonlinearity is hard to find. Yet, there are a couple of possible
strategies to reach the goal of a π phase shift. Fushman showed that a single quantum
dot coupled to a photonic crystal can yield a phase shift up to π/4[3]. Other researchers
coupled an optical resonator to an atom or an atomic ensemble [4, 5]. Another possibility is
the use of electromagnetically induced transparency (EIT) with low-lying atomic states[6].
Very recently, by using EIT a much smaller phase but conditional cross-phase modulation
of 18 µrad was achieved. This result is still several orders of magnitude away from the goal
of a π phase shift. However, a promising implementation is the combination of EIT with
Rydberg states[7–9]. With this combination an effective phase shift per photon between
π/10 and π/3 could be reached. So far, only one experiment [10] reached this goal of π.
The experiments by Volz[10] and Firstenberg[11] measured the self-phase modulation of
a single continuous wave (CW) light field. The other experiments [3, 4] measured the
cross-phase modulation (XPM). The XPM was created by one CW light field for another
CW light field, but with the extension down to a single photon level the characteristic
time of the nonlinearity was too short to spectrally separate the two modes in the XPM.
Due to a no-go theorem [12, 13] it should be impossible to achieve an optical QIP on this
basis. Therefore, none of these experiments could fulfil the requirement for deterministic
optical QIP, where one single photon light field controls another light field. Recently, two
experiments used an exception of Shapiro’s no-go theorem to create a giant optical Kerr
effect. They coherently stored a weak light pulse in an atomic quantum memory via EIT,
while sending another light pulse through the EIT medium[14, 15]. These experiments
achieved a controlled phase shift of 3.3 rad and π. The setup is similar to the setup
of an optical transistor which was a recent experiment of our group[9]. To measure the
controlled phase shift, imprinted on the target pulse phase, it is necessary to build a
heterodyne single-photon interferometer. In this thesis, a single-photon interferometer
was set up and characterized for a later integration in the main experiment.
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2 Setup
In this thesis the setup for a measurement of a single photon phase shift was realised. For
the measurement of a photon phase shift and its verification by comparing the photon
signal with the classical signal an interferometer with two detectors was built.
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Figure 1: General setup of the few photon interferometer. The setup can be
divided in three sections. Segment 1 - Laser Sources, Segment 2 -
Interfero-meter and Segment 3 - Detection
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2 Setup

The setup can be divided into three segments (see fig.1). In the first segment the
laser sources are adapted, such that they have the same beam properties. The second
segment consists of an interferometer with two arms. One arm is modulated with a
constant frequency. While the other arm allows the phase to be shifted. Subsequently,
the two beam paths are overlapped again to produce interference. The third segment is
where the measurement takes place in two different ways: the classical signal is detected
with a photodiode and the few photon-signal is detected with a photon-counter module.In
the following, the requirements for this setup are clarified and the experimental realisation
is described in detail.

2.1 Segment 1 - Laser Sources

Two different light sources are used: the first laser is a self constructed, distributed
feedback laser (DFB) from the 5. Physical Institute (University of Stuttgart),whereas the
second source is a commercial diode laser from Toptica (DLPro series)[16].
The DFB laser does not have an inbuilt optical isolator. Therefore, an additional optical
isolator has to be integrated to protect the laser from feedback due to back reflections.
The wavelength of both lasers is 780 nm. Technically, it is not necessary to use two lasers
since the laser beam is split and interfer with it-self, but in this way it is possible to see if
there are differences caused by the coherence and the collimation properties of the laser
light.
The basic task is to align the beams of the two lasers in a single point. For this reason
a non-polarizing beam splitter cube (50/50 cube, BS), with a transmission and reflection
of 50%, is used.
In order to use both lasers without changing anything on the beam path setup, the
lasers have to be aligned in intensity and beam width. This alignment is necessary to
achieve the same amount of light coupled into the fibre. Moreover, by comparing the
data sheets [16] of the two lasers, the beam width of the DFB laser has to be reduced
by approximately two-thirds of its width. This is also necessary to send the beam trough
the beam modulation devices in section 2.
To this end, a telescope with a magnification (M) of M = 30 mm

100 mm is used[17]. For coupling
purposes the beam width is measured with two different methods. The first method
employs a blade which is moved through the beam, the other method uses a Shack-
Hartmann-Sensor to determine the beam width.
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2 Setup
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Figure 2: Measurement of the laser intensity as a function of the position of the
blade for a DFB laser (a) and a DLPro laser (b).

With the blade method it is possible to determine the horizontal beam width and its
shape (see Fig.2)As the fitted line in the figure depicts. the beam shape can be accurately
modelled with an Gaussian error function (finite integral over a Gaussian distribution).
The beam width is 0.79 mm for the DLPro laser and 0.81 mm for the DFB laser. The hor-
izontal waist positions differ approximately by 1.1 mm. Unfortunately, with this method
only the horizontal position of the beam may be determined. To align the two lasers
properly on a common point a two-dimensional alignment of the beam paths is neces-
sary. Therefore, a Shack-Hartmann-Sensor is employed.To adjust the beam widths, and
to collimate the beams in order for them to pass through the exact same horizontal and
vertical position.
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2 Setup
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Figure 3: Measurement of the beam position with a Shack-Hartman-Sensor. For a
DFB laser (a) and a DLPro laser (b). The laser intensity (colour coded)
is plotted as a function of the horizontal and vertical position on the
sensor measured in pixels.

The intensity of the lasers was reduced by filters to protect the sensor. The Shack-
Hartmann-Sensor is able to calculate the beam width of an incoming beam automatically.
The automatically determined beam widths are 0.8 nm for the DFB laser and 0.8 nm for
the DLPro laser. With a pixel size of 0.2 nm this leads approximately to the same results
measured with the blade method.

2.2 Segment 2 - Interferometer

In this segment of the experimental setup the aligned laser beam during the first module
is split and modulated in phase and frequency. Subsequently, both laser beams are re-
combined and interfere with each other. In the following, the devices, which are used for
this purpose are presented and explained in more detail.

2.2.1 Polarising beam splitter

With the help of a polarising beam splitter (PBS) the beam is divided into two polarised
beams: one beam with horizontal polarisation and the other with vertical polarisation.
The advantage of this beam splitter is, that with the help of a lambda half plate the
intensity distribution of both beams may be varied. This is necessary to maintain a
perfect balance of the intensities after the fibre coupling.
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2 Setup

2.2.2 Electro-optic modulator

The electro-optic modulator (EOM) uses the Pockels effect which is an electro-optic ef-
fect to modulate the phase of a light wave, with the help of a birefringent crystal and
capacitor plates. A change of the electric field causes the refractive index to change. This
modification of the refractive index of a non-linear crystal, which is used for the Pockels
cell, changes proportional to the strength of the field [18]. The material, which is used in
this case, is a MgO:LiNbO3 crystal and has different refractive indices along the different
crystal axes. This implies that the effect of the crystal depends on the orientation of the
crystal axes in relation to the electric field. Further more, the polarisation of the wave
propagating through the crystal is another important factor which has to be considered.
It can be shown theoretically [20] that the index of refraction as a function of the electric
field may be expressed as:

n(E) = n0 −
1
2 · reff · n

3
e · E, (2.1)

where n0 describes the refractive index in the absence of an electric field. The coefficient
reff is the Pockles coefficient, which affects the incoming laser beam, ne is the refractive
index in the presence of an electric field and the electric field of the parallel-plate capacitor
itself is described by E.[19] A constant phase shift, is by n0, however in our case the the
voltage dependent phase shift is of more relevance. Therefore, only considering the relative
phase shift, the equation can be re-written as

∆n(E) = 1
2 · reff · n

3
e · E, (2.2)

which describes the change of the index of refraction merely due to the electric field. To
obtain the phase shift resulting from a change of the refraction it is necessary to know
the magnitude of the phase shift

Φ = 2 · π
λ0
· n · L (2.3)

that the light beam picks up, by propagating through a non-linear medium.[20] λ0 de-
scribes the wavelength outside the medium, n the refractive index of the medium and L
describes the length the beam has to travel through in the medium. Assuming that the
capacitor is a perfect parallel-plate capacitor which produces an electric field,

E = V

d
(2.4)

with dependency on the applied voltage V and the distance d between the plates. The
phase shift may be described as

Φ = L · π
λ0
· n3

e · reff
V

d
. (2.5)

The refractive index also depends on the wavelength of the laser beam. The dependency
of the index of refraction on the wavelength is given on the specification sheet of the
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2 Setup

crystal[21]. Hence for a laser wavelength of 780 nm, the refractive index of the crystal
with an applied electric field was calculated to be

ne(λ) =
√

4.5469 + 0.094779/(λ2 − 0.04439)− 0.026721 · λ2 (2.6)
⇒ ne(780) = 2.16765. (2.7)

Now using the properties of the crystal and the properties of the optical setup the phase
shift can be calculated. The phase shift in dependency of the voltage could be calculated.
Therefore, the resulting phase shift may be expressed purely as a function of the applied
voltage (as illustrated in Fig.4).
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Figure 4: In this diagram the shift in units of π is plotted as a function of the ap-
plied voltage. In this case the wavelength is 780 nm and the electro optic
coefficient reff is 30.7 pm/V[21]. The graph shows, that approximately
400 V are necessary to reach a shift of π on the signal beam.

To reach a phase shift of π a high voltage power supply of up to 500 V from Applied
kilovolts was used. Nonetheless, applying such a high voltage to a standard metal case
can produce sparks between the capacitor plates. To avoid the sparkling between the two
metal parts the case was redesigned and 3D-printed out of polyactide plastic. The final
output voltage of the capacitor may be regulated by means of a second control voltage
in a much lower range of 1− 10 V. The output voltage then adopts a linear dependence
on this control voltage. One important point was that the electric field of the capacitor
should be switchable. Therefore a high voltage switch was used. Because this switch was
used for the first time some basic characterisations, which could effect the setup.
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Figure 5: Plot of the capacitor voltages as a function of time after the switch is
flicked. Various line colours (see legend) indicate different levels of con-
trol voltage. An average rise time of 24.5 ± 2 ns is observed for different
control voltage levels likewise a voltage overshoot of ca. 20% ±4 on av-
erage occurs for all control voltages. An negative offset is noticeable,
which decreases linear with a rising level of the control voltage.

The above mentioned overshoot of the output signal produces noise on the interfered
measurement signal, which has to be considered at later measurements. Furthermore, the
ratio between the control and amplified voltage was calculated to be V oltout(x) = 52.3 · x
with x as a variable for the applied control voltage. In addition the dead time of the
switch and the signal delay time of the switch are measured. The measurement of the
dead time yield to a highest possible switching frequency of 500 kHz. A higher switching
frequency will cause voltage loss at the output signal. The delay time of the switch was
496 ns, which is in accord with the data from the specification sheet of the switch [22].

2.2.3 Acousto-optic modulator

To gain a frequency difference between the split beams an acousto-optic modulator (AOM)
was used. The AOM uses the acousto-optical effect to diffract the incoming laser light
into different orders through the following mechanism:
Stimulation of a piezo-electric transducer with an oscillating electrical signal results in
acoustic waves propagating through a dense, highly refractive material, such as a special
type of glass or crystal. The standing wave created in the material, leads to a density
chance, which, in turn, causes a change of the refractive index of the material. Due to
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2 Setup

the fact that the simulating frequency is much lower than the frequency of the light, the
standing wave in the transmitting material acts like a diffraction grating to the incoming
laser beam.

acoustic
absorber

piezo-electric-
transducer

light beam
0. order

-1. order

-2. order

+1. order

+2. order

Figure 6: Principle of an AOM (simplified): incoming laser light propagates
through the crystal of the AOM. Due to the acoustic modulation of the
crystal, the laser beam is diffracted into different orders. These orders
appears in angles of the Bragg regime.

A standing wave in a material does not shift the frequency of the incoming beam. There-
fore the beam has to be scattered on moving plans. The consequent for the incoming
beam is a Doppler-shift by the amount of the diffraction order times the driver frequency.
In order to gain a frequency shift of 80 MHz driver frequency of 80 MHz is applied to
the AOM and the first positive order is used. The negative first order may also be used
instead. The benignity of the driver frequency is checked with a spectrum analyser to be
capable to determine the frequency and resultant the period time.
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Figure 7: Measured frequency spectrum of the AOM driver signal and Gaussian
fit with a peak at 79.89 ± 0.01 MHz. The beat width, defined by twice the
width of the Gaussian function, is 356 kHz.

2.2.4 Power balancing

Interference of light is a well-researched and discussed topic [23]. For this experiment it
is important to descry how to reach the most effective interference between the two laser
beams. One conclusion from basic interferometry is that to create effective interference
it is important for the beams to be well balanced in intensity.

The power of the lasers are measured at different positions (see Table 1) and as best as
feasible matched with each other by compromising between splitting the beams effectively
and generating sufficient (but not excessive) power after the coupling.
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2 Setup

Position DLPro DFB
Pos. 1 7.04 mW 5.96 mW
Pos. 2 7.12 mW 6.01 mW
Pos. 3 5.03 mW 4.37 mW
Pos. 4 1.95 mW 2.03 mW

Table 1: Intensity of the beam paths at different positions. Position 1: path
through the AOM, just after the AOM. Position 2: path through the
EOM, just after the EOM. Position 3: before the fibre coupler. Position
4: after the fibre coupler. Crucial position for the power measurement
is position 4, since excessive beam intensity reaching the photon counter
could destroy it.

When coupling the light into the single-mode fibre, approximately half the power is lost
(remaining power after coupling: 38-46%). Despite the power loss this coupling mech-
anism has multiple benefits: firstly, by coupling the beams of both arms of the inter-
ferometer into a singe fibre, interference is drastically improved; secondly, the use of a
single-mode fibre prevents the occurrence of other modes in the beam. To balance the
power between the two arms a PBS cube is used to control the intensity for the trans-
mission and reflection of the beam with a lambda-half plate (see above). Furthermore,
interference can only take place if the overlapping beams have the same polarisation.
Because of this circumstance, another lambda-half plate has to be used in one of the
interferometer arms to rotate the polarisation by 90 degrees.

2.3 Segment 3 - Measurement

This section describes the different measurement methods, which are used to measure the
phase shift produced by the EOM. After the coupling of the laser beam in module 2,
the beam is out-coupled and split with a BS. One the resulting beams is measured with
a classical photodiode, while the other beam is measured with a single photon counter
module.

2.3.1 Photodiode

For the classic measurement of the modulated sinus signal a self-built photodiode is used.
In this device a photosensor from Hamamatsu G4176-03 is obstructed. To amplify the
signal from the photodiode radio frequency amplifiers (Bias-Tee MiniCircuits ZX85-12G+,
MiniCircuits ZX60-8008E+) are used. This photodiode outputs an alternating current
(AC) signal. Which creates the advantage that only the beat frequency is detected and
not the offset of the signal.
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2 Setup

2.3.2 Single photon counter module

In the other type of measurement, the signal is detected with a single photon counter
module (SPCM) (Excelitas). This SPCM uses a unique silicon avalanche photodiode
(SLiK), which leads to a dead time of only 24 ns. Also a peak photon detection efficiency
greater than 70% at 700 nm over a 180µm diameter can be achieved. The maximum
counting rate of this module is 5 million counts per second. This value shouldn’t be
exceeded or it can cause damage to the SPCM. If a photon gets detected, the SPCM
outputs a transistor-transistor logic (TTL) pulse with an amplitude of 1.5 V. [1]

2.3.3 FPGA based pulse generator

To generate controlling pulses for the EOM and the measurement devices, a field-programmable
gate array (FPGA) based pulse generator with a nano-second precision is used. This pulse
generator was developed by Dr. Helmut Fedder and the 5th physical institute of the uni-
versity of Stuttgart. The testing and characterisation of this device were done by Felix
Engel in his Bachelor thesis. [2] With this pulse generator it is possible to generate nano
second pulses with an accuracy of 0.4 ns. This accuracy of the pulses was necessary for
the trigger pulses of the time-tagger.

2.3.4 FPGA time-tagger

For the measurement of the photon pulses a FPGA based time-tagger[3] is used. This
FPGA based Time-Tagger can detect up to eight independent channels with a time reso-
lution of 60 ps. If a pulse reaches the FPGA chip, which is higher than a specified trigger
level, a time tag is saved at the buffer memory of the time-tagger. Subsequently, the time
tag is sent via USB2 to a computer. It is temporary stored in the random access memory
of the computer. However, the bit rate of the USB2 and the FPGA chip are limited by a
total counting rate of 5 million counts per second for all channels.
For later discussions about the data analysing it is essential to understand the concept of
the save files. The measurement starts with a trigger pulse which is applied on an input
channel of the time-tagger. It counts the incoming photon pulses for a specified number
of bins (line width). The detected counts are saved as a time tag in an array, where the
column number is the number of bins for a fixed time interval. The measurement time is
defined by the column length of the array times the bin size. If there is a trigger pulse
for a new measurement during the measurement time the pulse will be ignored, otherwise
the trigger pulse will start a new shot row. The new shot array would be saved in the
next following row of a matrix. Consequently the final save file is a matrix with (number
of shot) x (number of bins).
[1]Spec.:delaytime= 40 ns; dark counts < 250 counts/s (confirmed). All of this information are taken

from the specification sheet of the SPCM.[24]
[2]Entwicklung eines FPGA basierten Pulsgenerators mit Nanosekunden-Auflösung fur schnelle Rydberg-

Experimente by Felix Engel
[3]This time-tagger prototype was developed from the 3rd Physical Institute as well as the controlling

software.
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2.3.5 Alignments

Classic Signal

As explained above a single beam is split into two separate beams with almost identi-
cal intensity. The beam for the classical measurement is focused with a lens and then
detected with an AC photodiode. The signal, which reaches the photodiode has an inten-
sity of 0.7 mW. The photodiode produces a sinusoidal output signal with an amplitude
of 50 mW. This amplitude can be measured with an oscilloscope. As a result of the low
amplitude the time-tagger has difficulties to find an appropriated trigger level. Moreover,
the time-tagger is only able to detect positive input voltages. Therefore the sinusoidal
signal is offset with a Bias-Tee. Since the time-tagger can detect signals with a sharper
slope more precisely than a low amplitude the signal was amplified by a factor of two with
a radio frequency amplifier and then send to an RF switch. This was necessary because
the time-tagger can only detect continuous signals up to 5 million counts per second. A
frequency of 80 MHz would produce 80 million counts per second. This would lead to a
buffer overflow. Therefore, the signal is switched to reduce the number of counts which
reach the time-tagger to an average amount of 3 million counts per second.

Single-photon Signal

For the SPCM measurement to be successful, some modifications have to be made to the
setup. First, the beam has to be coupled into a single-mode fibre to send the light to
the SPCM. Because of the limitation of the SPCM, the intensity of the beam has to be
attenuated by optical filters. The attenuation of the filters can be calculated by knowing
the intensity of the incoming laser beam and some basic light properties. Finally there
should a counting rate of 1 million counts per unit time. Therefore the attenuation O is
calculated as:

P1Mio = n
h · c
λ

= 2.5 · 10−13W (2.8)

Plaser = 0.8 · 10−3W (2.9)
→ O = 1010 (2.10)

To be safe, first more filters than necessary are used and then experimentally reduced
until the target counting rate is reached.
For the SPCM alignement the dark counts have to be determined. Therfore the laser
emissions were turned off and only with fibre attached the SPCM was turned on. To
prevent light from the room to couple into the fibre and to reduce the dark count well
below 1500 counts/s a 780 nm bandpass filter is mounted in front of the lens of the fibre
coupler. With this additional filter an average dark count rate of 254 counts/s could be
reached.
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3 Classical Measurement
This section describes the different measurements carried out during the bachelor thesis
and presents the obtained results. Starting with the classical measurement of the phase
shift with an oscilloscope and followed by the classical measurement with the time-tagger.

3.1 Classical Signal

For the discussion of the different measurement methods, it is important to understand the
different theories of light. The following description of the classical light theory is based
on the chapter "Classical optics" in Mark Foxs book "Quantum Optics - A Introduction"
[25]. There more information and derivations of the equations can be found.

The description of classical light used in this thesis is based on the Maxwell’s equations.
The electromagnetic waves are described by the electric field E, the magnetic field B,
the electric displacement D, and the magnetic quantity H . Then, the four laws of
electromagnetism in their differential form may be expressed as:

∇ ·D = %, (3.1)
∇ ·B = 0, (3.2)

∇×E = −∂B

∂t
, (3.3)

∇×H = j + ∂D

∂t
. (3.4)

Where the free charge density is % and the free current density is j. The first equation
is called Gauss’law of electrostatics, the second Gauss law of magnetostatics, and the
third equation is a combination of the Lenz’s and Faraday’s laws and thus Gauss law of
electromagnetic introduction. The fourth equation is Ampere’s circuit law with Maxwell
addition. For further informations and the derivation of the Maxwell equations there is a
detailed chapter about Maxwell equations in Hecht 2002.
With the use of a vector identity and the assumption that there are no free charges (% = 0)
or currents (j = 0) equation 3.4 may be written as

∇2E = ν0ε0εr
∂2E

∂t2
, (3.5)

where the electric displacement was substituted with D = ε0εrE. Therein, ε0 describe
the electric permittivity of free space which is given as a constant of 8.854 · 10−12 Fm−1 in
the international system of units (SI). The relative permittivity of an arbitrary medium
is given by εr.
With equation (3.5) the speed c of the propagating electromagnetic wave in free space
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(εr = 1) is given by

c = 1√
ν0ε0

= 2.9998 · 108Fm−1, (3.6)

For a dielectric medium which has a εr 6= 1, the speed of the propagating wave is given
by:

υ = 1√
εr
· c ≡ c

n
, (3.7)

The refractive index n of a dielectric medium relates to the optical properties of the
medium through:

n = √εr. (3.8)

The change of the speed of propagation of the wave through the medium causes phase
shifts.
The magnetic and electric fields are orthogonal to each other. So considering a wave
which propagates in the z direction and with a frequency of ω, the solution of Maxwell’s
equation is of the form:

Ex(z, t) = Ex0cos(kz − wt+ φ), (3.9)
By(z, t) = By0cos(kz − wt+ φ). (3.10)

Hence, the amplitude of the wave is given by Ex0, φ describes the optical phase (which
can be used to identify the phase difference) and k as the wave vector given by:

k = 2π
λm

= ω

υ
, (3.11)

with λm being the wavelength inside the medium. Alternatively, in complex notation,
one may also write the solution in the following form and then take the real part when
converting to real, measurable quantities:

Ex(z, t) = Ex0e
i(kz−wt+φ), (3.12)

By(z, t) = By0e
i(kz−wt+φ). (3.13)

By splitting an incoming beam with a PBS, the wave is separated into two orthogonally
polarized beams. After they are split, the beams are linearly polarized. This means that
the electric field vector only points along one direction. If both beams should interfere
with each other, the electric field vectors of both beams have to point into the same di-
rection.
There are many different ways to achieve interference. One of the most common inter-
ferometers is the Michelson interferometer. This interferometer uses the variability of
the beam path length to generate a beam length difference and therewith interference.
During the experiment of this bachelor thesis another method was used, as explained in
section setup. In this setup the interference and the output voltage of the photodiode can
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be written as a function of two lasers with two different frequencies ω1, ω2 as a function
of the time t.

VPD ∼ (Acos(ω1t) +Bcos(ω2t))2 =1
2(A2 +B2) + 1

2(Acos(2ω1t) +Bcos(2ω2t)) (3.14)

+ ABcos((ω1 + ω2)t) + ABcos((ω1 − ω2)t) (3.15)
→ ABcos(ωbt), (3.16)

Hence, the ABcos((ω1 − ω2)t) term describes the beat frequency of the resulting wave.
Since in this setup an AC photodiode is used, the resulting wave has a frequency ωb =
|ω1 − ω2|. The other DC terms are filtered out by the AC photodiode.
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3.1.1 Oscilloscope Phase Shift Measurement

The measurement of the classic signal is detected with a photodiode, which produces a
sinus signal with a frequency of approximately 80 MHz. This signal is measured with an
oscilloscope. The pulses and signals are visualised in the following figure (see Fig. 8).

EOM Pulse

PD Signal

Trigger Pulse

Figure 8: This pulse scheme shows the signals which are used for the measure-
ment of the classical phase shift. The EOM pulse is the main pulse
for this measurement. All other pulses are related to the 5 kHz square
EOM pulse. The trigger pulse of the oscilloscope has a width of 5000 ns
and is centred on the rising edge of the EOM pulse.

Coherence

First, the coherence stability of the laser for the measurement time has to be confirmed.
Therefore, a time interval of 5000 ns is measured with a resolution of 0.5 ns. This is the
longest time interval, which could be measured with the oscilloscope and avoid the loss
of resolution. A lower resolution leads to inaccuracy during the fit. To determine the
phase stability two sinus functions are fitted and compared: one sinus is fitted to the first
1000 ns of the measurements; the other sinus is fitted to the last 1000 ns.

The fit function is of the form:

fit = A · sin(2πbx+ 2πbc)− d, (3.17)

where A describes the amplitude, b the frequency, c the phase and d is the offset of the
signal. For a measurement which verifies the coherence of the laser beam all parameters
[1] should stay constant. However, the crucial parameters are the frequency and the phase
of the signal. The frequency of the fits should correlate with the driver frequency of the
AOM, as explained in the introduction in the section "Classical Signal". The first fit
function leads to a frequency of 79.896 ± 0.001 MHz. The second fit has a frequency of
79.896± 0.001 MHz. Within the inaccuracy the frequencies of the two fits are the same.
Likewise the comparison with the driver frequency verifies the results of the fit.

[1] fit 1 + fit 2: amplitude = 206 mV, offset = −6 mV
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Figure 9: The measured intensity output of the photodiode as a function of time.
In diagram (a) the first 50 ns of the measurement are visible. A sinus
function is fitted to the data points. In graph (b) the last 50 ns are vis-
ible. There another sinus function is fitted to the last data points ex-
cluding the first ones.

Subsequently, the parameter for the phase is compared. The fit at the beginning of the
measurement determines a phase of -3.574 with confidence bounds of (-3.579, -3.569).
Whereas the fit function at the end of the measurement time has a phase of -3.585 with
a high and low confidence bound of (-3.598, -3.573). The difference between the phase
parameters is 0.011 which is only 0.09 % of the total period if we consider a period of 12.5
ns and within the confidence bounds. Therefore the coherence over a time of 500 ns can
be confirmed. The measurement of the DLPro laser is summarised in the following table
(Tabel 2).This confirms the phase and frequency stability for both laser, to measure over
a time interval of 500 ns.
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3 Classical Measurement

Parameters values confidence bounds
b1 0.0798924 (0.0799, 0.0798)
b2 0.0798918 (0.0799, 0.0798)
c1 -5.482 (-5.487, -5.479)
c2 -5.479 (-5.473, -5.482)

Table 2: In this table the parameters of the two sinus fits for the DLPro laser are
listed. The indices describe, whether they belong to the fit at the be-
ginning (index = 1) or to the fit at the end (index = 2) of the measure-
ment. The frequency of both fits is within the error range of the fit func-
tion and correlate with the driver frequency. The difference between the
phase parameters is 0.003, which is less than the phase difference of the
DFB laser.

Phase shift

The analysis of the classical phase shift measurement with an oscilloscope is calculated
similar as the phase stability measurement before. The pulse scheme illustrated in Fig. 8
was used to trigger the measurement devices.
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PD signal EOM pulse

Figure 10: In this diagram the photodiode signal and the pulse signal of the EOM
are plotted over the time. Noise appears on the EOM signal. 1500 ns
after the EOM pulse the noise on the signal has normalized. Moreover,
there is no noise on photodiode signal before the EOM pulse reach the
crystal.

Because before the shift there is no noise on the signal, probably the EOM causes the noise.
A reason may be a small expansion of the crystal, which causes a small displacement of
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the beam. Consequently, this will change the intensity of the interference. The pulse for
the EOM is timed in the middle of the measurement. To reach a continuous signal before
and after the shift the signal is measured 1500 ns before and after the shift. Despite the
fit can be longer the same time interval is used to receive the same conditions for both fit
functions. In the following, the analysis method is explained with diagrams.
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Figure 11: This diagram shows the amplitude of the photodiode signal over the
time. For demonstration purposes function is fitted up to 2485 ns.
While the data points after 2485 ns are excluded, to produce a signal to
compare with and without phase shift. The high voltage pulse, which
causes the phase shift in the EOM, starts at 2495 ns. During the next
24.5 ns which is the rising time of the switch the phase is shifted to
its final phase. Another shift is noticable between 2425 ns and 2550 ns,
which is probably caused by the drop of the overshooting of the HV
switch pulse. The fit function describes the development of the signal
without phase shift. The signal is shifted in the forward direction of
the propagating wave. This means the distance between two following
maxima increases, during the shift happen. By rotating the crystal by
180 degree distance between the maxima will decrease, hence the shift
would be in the other direction.

This measurement is done for power supply control voltages in a range of 1 Volt to 10
Volts and the two fitting areas. Subsequently, the two fits are compared with each other.
Therefore the difference between the prior fit1 and the fit2 after the EOM pulse are
determined.
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Figure 12: This diagram shows the the last 50 ns of the measurement. The blue
zero Volt measurement is the signal fit without electric field attached.
Hence there is no phase shift. This is the reference signal. All other
measurements in this plot are regarding to this. Thereby, the red
graphs are the signal fit after the phase shift. The voltage in the leg-
end is the control voltage of the high power supply. Moreover, the di-
agram shows that the phase shift is increasing with rising control volt-
age as expected.

The previous figures are measured with the DFB laser. Also the DLPro laser is measured
with the same method. The measurements are made for different voltages to be able to
fit a linear function through it and compare the experimentally measured data with the
theoretically calculated values. The classical phase shift measured with the oscilloscope
fits nearly to the theoretically calculated values (see Fig. 13). The slope is lower than the
theoretical one. This different may be explained by the distributions in the electric field
of the EOM and an oscillation around the the output voltage of the high power supply.
Because of the fine differences in the diagram the raising functions are calculated. This
will give a better possibility to compare the functions with each other.

ΦDFB(V ) = 0.1345± 0.001 · V (3.18)
ΦDLPro(V ) = 0.1348± 0.001 · V (3.19)
Φtheory(V ) = 0.1359 · V (3.20)
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Figure 13: In this diagram the phase shift in units of π is plotted over the control
voltage. Thereby the theoretically calculation of the phase shift is also
plotted. Both laser have quite similar results for the phase shifts as a
function of the control voltage.
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3.1.2 Time-Tagger Phase Shift Measurement

Due to the advanced setup with a time-tagger the classical phase shift can be measured
with another methode. Therefore the classical signal of a photodiode was detected with
the time-tagger. As mentioned the frequency of the signal is to high for the buffer memory
of the time-tagger and run into a buffer overflow as a result of to many tags per second.
This leads to messy measurement data with arbitrary filled measurement arrays. The
solution is to pulse the signal with an RF-switch. The signal which now reach the time-
tagger has recovering times between the signal pulses. This recovering times keep the
total number of counts under 1 million/s.

EOM Pulse

PD Signal

Switch

Trigger TT

SPCM

Figure 14: This graph shows the pulse scheme of the different devices. The main
signal is the pulse signal of the EOM every other pulse is related to
this signal. The trigger signal (black) for the time-tagger is used to
start a new measurement row and to switch the photodiode signal
with the RF-switch. The EOM pulse signal is still a pulse with a fre-
quency of 5 kHz and a duty cycle of 50 % as used for the oscilloscope
measurement. The switch signal instead has two pulses with the same
frequency as the EOM signal to be able to measure before and after
the shift, with a pulse width of 1000 ns and a time difference of 3000 ns
between the measuring pulses. The total measurement time of 5000 ns
is in the verified coherence time of the laser.

This measurement outputs a 5000 times 2000 matrix because the bin size of the time-
tagger was set to 0.5 ns. The odd rows are the measurement prior the phase shift. Con-
sequently, the following even row numbers are the measurement pulses after the phase
shift. Primarily, the row save file matrix is separated into an even and an odd row number
matrix. Therefore, one matrix will contain the time tags prior the shift the other matrix
will contain the time tags after the shift. It is important to start with a low trigger signal
for this time-tagger. If not the first row will be the measurement after the shift and has
to be skipped for the sorting to start the sorting with the correct matrix. For the analysis
of the time-tagger measurements two different methods are use: one uses the differences
of the time tags between the prior and after shift matrix, the other method maps the
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time tags on a unit circle to use the angle difference to calculate the phase shift. For both
methods the frequency has to be known very precisely.
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Figure 15: In this figure the time tags of the matrix prior the phase shift is plot-
ted. The y axis describes the number of rows, the x axis is the number
of bins. The number of bins can be re-written as time, as shown in this
figure. In figure (a) a part of the row prior matrix is visualised. The
signal tags (red) are from the classical PD signal. Because the switch
signal is not in a related frequency to the interference signal the PD
signal has not the same starting phase. A slightly pattern is visible in
the unsorted matrix (a). In order to calculate the phase shift the time
tags has to be shifted to the same starting phase position. The time
tags shown in figure (b) are the result of individual shifts, which are
applied to every single row. To achieve a higher accuracy the shift is
made with float numbers.

First, to be able to shift the time tags to the same phase position (see Fig. 15b) the
period of the signal has to be determined. Therefore the difference between the time tags
is calculated. Sometimes for incomprehensible reasons the time-tagger misses a trigger
signal. To avoid wrong differences a range was defined which only allows differences
between a well defined range around the period time. To shift the single rows to the same
phase position the single positions of the time tags are determined. Then using the period
time and the modulo function an average shift for the single rows are calculated. Thereby
sometimes if the time tags are settled around a multiple of the periode, a completely
wrong shift was calculated. It is cause by time tags, which are sometimes settled at a
position which is more or less than the periode. This periodic issue can be solved by
a query, which calculate the standard deviation. Although, the row was only shifted if
the standard deviation was smaller than the half of the period. Finally the time-tags are
shifted by the amount of the checked shift. This steps is done for every row in the matrix.
Next the time tags in the matrix after the phase shift have to be shifted by the same
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amount to avoid to change the relation between matrices. Therefore, the shift of the n
row in the prior matrix is used to shift the n row of the matrix after the phase shift.
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Figure 16: This diagram shows a scatter plot of the time tags. Thereby the y axis
is describe the rows and the x axis the time. The time tags before the
shift (blue) are all positioned on a similar position which confirms the
sorting. However, the zero Volt measurement tag line has moved de-
spite there is no electric field for a phase shift attached. Hence, the
phase shift is not longer the different between the before time tags
compared to the measurement time tags after the shift. The zero Volt
measurement is used as the reverence phase shift for all later measure-
ment with different voltages. Also, the different rising voltages pro-
duce rising phase shifts as already seen in classical oscilloscope mea-
surement.

It seams that there is a negative phase shift (see Fig. 16). This may be explained by
the pulse scheme of the measurement. The measurement with the time-tagger has two
measurement pulses instead of one continuous measurement pulse. Consequently, the
starting phase of the sinus between the measurement pulses of the PD signal can differ.
This happens, when the time between the measurement pulses is not a multiple of the
period time. The change of the phase in the presence of the electric field and the resulting
phase shift are visible in figure 16. However, the difference between the prior matrix and
the matrix after the shift is calculated. Afterwards the continuous shift, defined by the
zero Volt measurement is removed.
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Figure 17: This graphic shows polar plots of the different shift related to their
voltages. The blue histograms carrying the mean vectors of the matri-
ces at a fixed voltage. A steady change of the angle of the histogram
position is visible.

Another method is to map the position of the time tags of one row on a unit circle.
Therefore the sorted even and odd number matrices are used. The following steps are
executed for both matrices. First the x and y positions of the time tags on a unit circle
are calculated by using trigonometrical functions and the period time. Then the means
of the x and y positions for all time tags of a single row are determined. After this the
position of the mean value of the prior matrix is traded as a vector and is rotated to
the zero degree position of the unit circle. By applying the same rotation to the mean
position of the vector, which describes the tags after the shift, the time tags are sorted
similar as the previous method. The angle of this vector describe the phase of the shift.
Ultimately, if this is calculated for all measurement voltages the angle of the zero Volt
measurement has to be reduced from the other angles. The angle can be re-witten as a
phase in units of π.

Both methods leads to highly similar results. The advantage of the unit circle mapping is,
the independence of the missed time tags and the periodic issues of the time tag positions
completely reduced.
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Figure 18: This diagram shows the phase shift in a unit of π in relation to the
control voltage of the high voltage power supply. Sometimes inaccu-
racies of the single phase shifts at certain values of volt are visible. For
this measurement the data of 150 matrices with 2500 rows are used.

The experimentally measured data can be compared with the theoretically calculated rise
of the shift function. Therefore a linear function was fitted on the measured values. The
result of the fit:

ΦDFB(V ) = 0.1361± 0.001 · V (3.21)
ΦDLPro(V ) = 0.1359± 0.001 · V (3.22)
Φtheory(V ) = 0.1359 · V (3.23)

The linear fit functions don not differ much but by comparing the differences between the
single measurements the oscilloscope measurement has a better linear behaviour of the
data points, which fulfil the theory. Despite the inaccuracy of the single phase shift points
the difference between the theoretically calculated rise of the function is less than 0.5%.
This result shows, that only with one time tag per period an effective measurement of the
phase shift can be made with the time-tagger. Nevertheless, the classical measurement
using the oscilloscope only needs one measurement and less total measurement time per
volt to achieve a better accuracy in comparison with the theoretic values.
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4 Photon Measurement
4.1 Photon statistic

The classical theory of light is described by electromagnetic waves. The quantum theory
of light consider the beam of light as a stream of photons. For the detection of a stream
of photons a single photon counter module is used. The output amount of the photon
counter depends on the photon flux Φ, which is the average number of the photons passing
through a cross-section A of the beam in a unit time.[25] The photon flux can be calculated
using the energy flux and the energy of the single photons:

Φ = I · A
~ω
≡ P

~ω
photons s−1, (4.1)

where I is the intensity of the beam and P the power, which is the intensity in a specified
area. Sometimes a photon counter detects incident photons. Therefore a photon counter
has a specified quantum efficiency η which is the ratio of the number of photons over
the incident photons. With the quantum efficiency the average number of counts in a
counting time T is given by:

N(T ) = ηΦT = ηPT

~ω
(4.2)

Thereby the average counting rate R in a second is given by:

R = N

T
= ηΦ = ηP

~ω
counts s−1. (4.3)

With this equations the average photon numbers could be calculated. The distribution of
coherent light with constant intensity has Poissonian photon statistic. In a beam segment
of the length L corresponding to equation 4.3 the average number of photons n is given
by:

n = ΦL
c
, (4.4)

where c is the physical constant of the speed of light. The probability P (n) of finding n
photons in a beam segment of the length L is given by:

P (n) = N !
n!(N − n)!

(
n

N

)n (
1− n

N

)N−n
, (4.5)

thereby the beam segment is divided into N subsegments. If we consider the number of
subsegments N goes against infinity and by the use of the Sterling formula finally the
photon statistic for a coherent light source can be described as[25]:

P (n) = nn

n! e
−n (4.6)
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The statistic of light therefore is described with a Poisson distribution. A Possonian
distribution is generally used to describe random processes that only return integer values.
Thereby the distribution peak is at the position n. The fluctuations of a statistical
distribution about its mean value is quantified in terms of the variance. The variance
correspond to the square of the standard deviation ∆n.[25] In the case of a Poisson
distribution the variance is defined by:

V ar(n) ≡ (∆n)2 =
∞∑
n=0

(n− n)2P (n). (4.7)

It also can be shown that that the variance is equal to the mean value n, which means
the standard deviation for the fluctuations of the photons is given by:

∆n =
√
n. (4.8)

Due to the fact that the photon counts have a Poisson distribution by measuring the
photons some shot noise appears. This shot noise can be seen as the number of photons
above and below the mean value of photon counts. Also a small amount is of the shot
noise is related to the darkcounts of the photodiode. The noise can easily be described
with the help of the photocurrent:

i = ηeΦ ≡ ηe
P

~ω
, (4.9)

where e is the modulus of the charge of the electron. The photocurrent i(t) in relation to
the time can be broken into a time-independent average current < i > and a time varying
fluctuation ∆i(t).

i(t) =< i > +∆i(t) (4.10)

In average the value of ∆i(t) has to be zero, but not the square of ∆i. For a precise mea-
surement the photocurrent has to be higher than the noise of the signal. This derivation
of photon statistic is based on the Oxford Master Series of Atomic, Optical,and Laser
Physics from Mark Fox [25]. The proofs for the relations which are used in this chapter
for example equation 4.8 can be found there.

4.1.1 Photon measurement

At the beginning of the measurement with the photoncounter the statistic of the laser light
were investigated. Therefore the photon counter signal was measured with measurement
pulses of 20µs. Thereby a poissonian distribution was expected. With the theoretic mean
count value of 51.5 photons per measurement pulse.
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Figure 19: In this diagram a histogram of the photon counts per measurement
pulse is plotted. For comparison, the theoretically calculated Poisson
distribution of the theoretical mean count value is plotted (red).

The measurement data and the theoretically calculated distributions does not match per-
fectly. A possible reason for this inaccuracy may result from the dead time of the photon
counter. However, the Poissonian statistic which is a prove for the coherent of the light
can be verified with figure 19.

4.1.2 Phase shift measure at few photon level

For this measurement the pulse scheme from figure 14 is used to create the trigger signal
for the time-tagger. The classical signal and the photon signal are measured at the same
time. The photon time tags are saved in a 5000 x 2000 matrix as the classical signal. This
matrix is also separated into a odd and even number matrix. To calculate a phase shift
between the two matrices they have to be shifted to the same starting phase position like
the classic matrices. Therefore the shift of the classical signal was used. The n row of the
matrix with the classical tags correlate with the n row of the photon tag matrix. Every
row is shifted by the same amount the rows of the classic matrix were shifted. After the
shifting the matrices are summed over the columns. This procedure is necessary to receive
a useful signal, because one single row of a matrix contains approximately only two photon
tags. With this method for a time interval of 1000 ns the resulting signal contains 5000
photons. Moreover, the ratio of the shot noise compared to the actual signal is to high.
Therefore, 150 matrices are measured of the same control voltage and summed together.
Figure 20 shows the photon signal for a different amount of matrices. We expect to see
a sharper sinus signal, which oscillate around the mean of the photon counts, with each
added matrix.
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Figure 20: In this figure the dependency of the photon signal as a function of the
amount of summed matrices is shown. Thereby figure (a) is only one
matrix. With some imagination a barely sinus oscillation is visible.
The shot noise of the signal is to high in comparison with the aver-
age number of photon tag per unit time. A sinus fit for this signal will
have a huge inaccuracy. The ratio of the shot noise degrees with an in-
creasing amount of matrices. This improvement of the signal is notice-
able during the increase of matrices from figure (b) with five matrices,
to figure (c) with 20 matrices to figure (d) with 100 matrices.

Figure 20 shows that the number of matrices which are used to calculate a photon signal is
important. The measurement of one time tag matrix takes 5 s. To receive a good photon
signal for the later calculation of the phase shift many matrices are necessary. To reduce
the total measurement time the photons are shifted to the first periods, which leads to
the same improvement as measuring more time tag matrices. Thereby, a modulo function
is used to shift photons, which are not in the first periods into the first periods. A sinus
fit needs some periods to reach its full accuracy. Therefore the accuracy as a function of
periods are investigated. After eight periods no noticeable improvement of the accuracy
could be made. Due to this conclusion the photons are shifted into the first eight periods..

39



4 Photon Measurement

0
20
40
60
80 aa

C
ou

nt
s

0 10 20 30 400

1,000

2,000

3,000 dd

Time [ns]

0
50

100
150
200 bb

0 10 20 30 400
200
400
600
800 cc

Time [ns]

C
ou

nt
s

Figure 21: In this graphic the photons are shifted to the first eight periods. Fig-
ure (a) shows the measurement with one matrix. In the other figures
more matrices are used:(b)=5, (c)=20 and (d)=100 matrices. In com-
parison with figure 20 a clear improvement is noticeable. With 5 ma-
trices approximately the same results could be achieved like the 100
matrices in figure 20.

By the comparison of different amounts of matrices an improvement of more than ten times
can be achieved. This improvement is described by the ratio between the amplitude and
the shot noise.
The matrices have the same properties as the classic time tag matrix and therefore to
deal with the same problem of two separated measurement pulses and different starting
phases. Consequently, a similar method of analysis as it was used for the oscilloscope
measurement is used. The only different is, that the fit areas are limited by the captured
time of the matrices before and after the shift. Also the alignment measurement with a
voltage of zero Volt is used as a reference phase shift. The other voltage measurements
are related to this basic phase shift.
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4 Photon Measurement
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Figure 22: In this diagram the photon count signal fits are shown. The photon
counts are plotted over the time. Hence, the measurement with a volt-
age of zero Volt is used to related all other measurement to it and
calculate the relative phase shift of the different voltages. The phase
shifts in the forward direction of the wave increases with rising volt-
age.

To calculate the relative phase shift the phase shifts are mapped on an unit circle. There-
fore the x and y value of the phase shift was calculated using the standard trigonometrical
functions cousins and sinus. We used a rotation matrix to rotate the before vector to the
zero position of the circle. The vector which is the position after the shift was rotated
by the same amount. A tangent function is used to calculate the angle of the position on
the unit circle between 0 and 2π. The angular phase shift can be re-written in units of π.
The last step is only to correct the shifts with the zero volt basic phase shift.
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4 Photon Measurement
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Figure 23: In this polar diagram the phases of the fit functions are mapped on a
unit circle. Thereby, the histograms describe the phase with its inaccu-
racy (confidence bounds) of the different voltages. The positions of the
rising voltages are steadily shifted anticlockwise.

With this method the relative phase shift of the photons can easily be calculated. The
measurement is proved with a phase shift verification measurement using the DLPro laser.
This leads to similar results which are visualised in figure 24. Thereby the function of the
linear fits are:

ΦDFB(V ) = 0.1348± 0.0015 · V, (4.11)
ΦDLPro(V ) = 0.1346± 0.0015 · V, (4.12)
Φtheory(V ) = 0.1359 · V. (4.13)

The calculated phase shifts have nearly the same phase shift as the theoretical ones. The
theoretically calculated values are higher than the experimental measured ones. This be-
haviour was also observed in the classical measurements. The reason for this behaviour is
tracked back to the inaccuracy of the HV power supply and some discontinuity. Small im-
purities in the crystal can lead to a lower phase shift with an unchanged linear behaviour.
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4 Photon Measurement
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Figure 24: This figure shows the phase shift over the control voltage. To compare
the measured phase shifts with the theoretic values, the theoretic func-
tion is plotted in this figure. A linear fit was made through the data of
both lasers.
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5 Error Analysis
In this experiment, errors are caused either by analysis or by devices with inaccuracy
in the experimental setup. Moreover, the analysis method of a sinusoidal measurement
signal, which uses two sinus fits to calculate the phase difference and the method which
only saves time tags has to be considered separately.
To calculate the error caused by imprecise devices in the setup, the responsible devices
have to be determined: the AOM, the EOM and the HV-supply.
The driver frequency of the AOM fluctuates at most ±1 kHz over one hour. The error
which occur to this inaccuracy was not calculated, because of its negligible small amount
(0.0001 π)
EOMs are very sensitive to disturbance of the electric field. For a determination of an error
of the phase the theoretical values of phase shifts in dependency of voltage are calculated
and compared with experimental measured values. This leads to an error parameter of
0.98 for the electric field.
The stability of the HV-supply was measured with an oscilloscope, which shows a noise
oscillation with ±5 V.
With those assessments an additive error for due to the experimental setup becomes:

∆Φvolt(x) = 0.0136π, (5.1)
∆Φefield(x) = 0.002π · x. (5.2)

and therewith a total standard error of ±0.0136 π ±0.002 · x, thereby x describes the
applied control voltage.
The error which is caused by the fit and analysis of the measured data occur due to the
fit confidence bounds. By comparing the phase parameter prior and after the phase shift
of the sinus fits, a minimum and maximum phase shift can be determined. This error is
independent of the level of the control voltage only the sharpness of the signal is relevant.
Therefore, an average error of the measurements with a sinus signal are calculated. The
average inaccuracy of 0.003 in units of π is negligibly small.
For the classical signal measured with the time-tagger there is an error due to the use of
alternative methods to calculate the phase shift and the bin size of 0.5 ns. The error was
calculated by using the standard derivation of the histogram plots around the unit circle.
This leads to an phase inaccuracy of 0.1 ns which is an error of ± 0.012 π.
The larger inaccuracy of the of the classical sinus analysis (see Fig. 13) and the classical
time-tagger analysis (see Fig. 18) is recognisable with the naked eye.
The results can be improved with the use of a preciser HV-switch, with less overshooting.
Moreover, the measurement using the FPGA time-tagger of the classical signal can be
realised with a smaller bin size. This was impossible in this bachelor thesis because
smaller bin sizes on the same measurement time exceeded the matrix dimension which
are permissible on a 32-bit system.
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6 Conclusion and Outlook
The goal of this bachelor thesis was to build and characterise a setup for the measurement
of a phase shift on a single-photon level. For this purpose, an optical setup was realised
(see Fig.1). To verify the source independence of the setup two different lasers were used
for the measurements. The phase shift was produced with a self-built EOM and then first
measured using a classical signal from an AC photodiode. This measurement is used as a
reference for the single-photon method utilising a SPCM.
Furthermore, the classical signal output of the AC photodiode was measured with an
oscilloscope and with a FPGA based time-tagger. The motivation is to finally use only
one analysing device (FPGA time-tagger) to determine the classical phase shift on a
single-photon level. However, the classical measurement was first using carried out an
oscilloscope and subsequently two sinusoidal fits, one prior and one after the phase shift
to analyse the phase change. As a second approach the classical signal was measured with
an FPGA time-tagger. This measurement methods saves time tag of the classical signal,
whenever the classical sinusoidal signal passes a given trigger level. The time tags are then
saved in a matrix (number of shot) x (number of bins). To measure prior and after the
phase shift, two measurement pulses are used. These two measurement pulses are defined
as one set of measurements and divided into two matrices (prior-, after-shift). The time
between the different set measurements is not a multiple of the photodiode sinus signal.
Consequently, the starting phase of the sinusoidal signal in the different sets differ and has
to be shifted by the use of a modulo function to the same starting position (illustrated
in Fig.15 ). Subsequently, the mean position of the single time tags are calculated by
the use of the modulo function. This is carried out for the prior and after matrix. The
differ of the mean modulo result may be re-written as a shift. Another method is to map
the position of the time tags on a unit circle. By rotating the mean vector of the prior
measurement to the zero position of the unit circle and applying the same rotation to the
mean position of the vector, describing the tags after the shift, will sort all classical time
tag measurements (see Fig.17 ). The angle of the different voltages describes the phase
shift.
The measurement at a single-photon level using a SPCM is realised with the same mea-
surement pulses at once (see pulse scheme Fig. 14). Hence the rotation of a set of classical
tags can be re-written as a time shift. Therewith the related sets between the classical
tags and the photon tag carrying matrix are shifted. After that the photons are summed
vertically and shifted in the first eight periods two reach a higher signal per measurement.
By the use of many matrices a clear sinusoidal signal appears which is used to fit a sine
function. The comparison between the prior matrix fit phase and the after matrix fit
phase determines the phase shift.
In summary, the values of the phase shift measured at a single-photon level can be veri-
fied with a classical measurement and a theoretic calculation. However, the classical light
FPGA time tagger measurement has a higher inaccuracy than the classical oscilloscope
measurement. A reason may be the bin size of the measurement which can be improved
to a lower size. Nonetheless, the photon signal with the same bin size achieve higher pre-
cision, which probably can be traced back to the averaging and summing of the photons
in the matrices.
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6 Conclusion and Outlook

This setup was developed to measure the phase shift of a light beam propagating through
an atomic cloud. The phase shift is caused by the presence of a Rydberg atom in the cloud
which, in turn, can be created using a single photon. A way to measure a phase shift
difference produced by a Rydberg blockade uses an incoming beam of different polarised
photons (σ+, σ−) [11]. Thereby the strong non-linear interaction between the σ+ photons
can be detected. While the σ− photons are used as a reference. With the exception of
a not interfered polarised beam which is separately detected onto two SPCM the same
setup and analysing algorithm can be used. With this additions the setup will be realised
in the Rydberg experiment during the next year, to prove the phase shift of a light field
with a single-photon transistor.
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